MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strleun Structured version   Visualization version   GIF version

Theorem strleun 17089
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f 𝐹 Struct ⟨𝐴, 𝐵
strleun.g 𝐺 Struct ⟨𝐶, 𝐷
strleun.l 𝐵 < 𝐶
Assertion
Ref Expression
strleun (𝐹𝐺) Struct ⟨𝐴, 𝐷

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6 𝐹 Struct ⟨𝐴, 𝐵
2 isstruct 17084 . . . . . 6 (𝐹 Struct ⟨𝐴, 𝐵⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2mpbi 229 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))
43simp1i 1139 . . . 4 (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵)
54simp1i 1139 . . 3 𝐴 ∈ ℕ
6 strleun.g . . . . . 6 𝐺 Struct ⟨𝐶, 𝐷
7 isstruct 17084 . . . . . 6 (𝐺 Struct ⟨𝐶, 𝐷⟩ ↔ ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7mpbi 229 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))
98simp1i 1139 . . . 4 (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷)
109simp2i 1140 . . 3 𝐷 ∈ ℕ
114simp3i 1141 . . . . 5 𝐴𝐵
124simp2i 1140 . . . . . . 7 𝐵 ∈ ℕ
1312nnrei 12220 . . . . . 6 𝐵 ∈ ℝ
149simp1i 1139 . . . . . . 7 𝐶 ∈ ℕ
1514nnrei 12220 . . . . . 6 𝐶 ∈ ℝ
16 strleun.l . . . . . 6 𝐵 < 𝐶
1713, 15, 16ltleii 11336 . . . . 5 𝐵𝐶
185nnrei 12220 . . . . . 6 𝐴 ∈ ℝ
1918, 13, 15letri 11342 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
2011, 17, 19mp2an 690 . . . 4 𝐴𝐶
219simp3i 1141 . . . 4 𝐶𝐷
2210nnrei 12220 . . . . 5 𝐷 ∈ ℝ
2318, 15, 22letri 11342 . . . 4 ((𝐴𝐶𝐶𝐷) → 𝐴𝐷)
2420, 21, 23mp2an 690 . . 3 𝐴𝐷
255, 10, 243pm3.2i 1339 . 2 (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷)
263simp2i 1140 . . . . 5 Fun (𝐹 ∖ {∅})
278simp2i 1140 . . . . 5 Fun (𝐺 ∖ {∅})
2826, 27pm3.2i 471 . . . 4 (Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅}))
29 difss 4131 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
30 dmss 5902 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
3129, 30ax-mp 5 . . . . . . 7 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
323simp3i 1141 . . . . . . 7 dom 𝐹 ⊆ (𝐴...𝐵)
3331, 32sstri 3991 . . . . . 6 dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)
34 difss 4131 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
35 dmss 5902 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3634, 35ax-mp 5 . . . . . . 7 dom (𝐺 ∖ {∅}) ⊆ dom 𝐺
378simp3i 1141 . . . . . . 7 dom 𝐺 ⊆ (𝐶...𝐷)
3836, 37sstri 3991 . . . . . 6 dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)
39 ss2in 4236 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
4033, 38, 39mp2an 690 . . . . 5 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷))
41 fzdisj 13527 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
4216, 41ax-mp 5 . . . . 5 ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅
43 sseq0 4399 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4440, 42, 43mp2an 690 . . . 4 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅
45 funun 6594 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4628, 44, 45mp2an 690 . . 3 Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
47 difundir 4280 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4847funeqi 6569 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4946, 48mpbir 230 . 2 Fun ((𝐹𝐺) ∖ {∅})
50 dmun 5910 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5112nnzi 12585 . . . . . . 7 𝐵 ∈ ℤ
5210nnzi 12585 . . . . . . 7 𝐷 ∈ ℤ
5313, 15, 22letri 11342 . . . . . . . 8 ((𝐵𝐶𝐶𝐷) → 𝐵𝐷)
5417, 21, 53mp2an 690 . . . . . . 7 𝐵𝐷
55 eluz2 12827 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5651, 52, 54, 55mpbir3an 1341 . . . . . 6 𝐷 ∈ (ℤ𝐵)
57 fzss2 13540 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5856, 57ax-mp 5 . . . . 5 (𝐴...𝐵) ⊆ (𝐴...𝐷)
5932, 58sstri 3991 . . . 4 dom 𝐹 ⊆ (𝐴...𝐷)
605nnzi 12585 . . . . . . 7 𝐴 ∈ ℤ
6114nnzi 12585 . . . . . . 7 𝐶 ∈ ℤ
62 eluz2 12827 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6360, 61, 20, 62mpbir3an 1341 . . . . . 6 𝐶 ∈ (ℤ𝐴)
64 fzss1 13539 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6563, 64ax-mp 5 . . . . 5 (𝐶...𝐷) ⊆ (𝐴...𝐷)
6637, 65sstri 3991 . . . 4 dom 𝐺 ⊆ (𝐴...𝐷)
6759, 66unssi 4185 . . 3 (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)
6850, 67eqsstri 4016 . 2 dom (𝐹𝐺) ⊆ (𝐴...𝐷)
69 isstruct 17084 . 2 ((𝐹𝐺) Struct ⟨𝐴, 𝐷⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ Fun ((𝐹𝐺) ∖ {∅}) ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷)))
7025, 49, 68, 69mpbir3an 1341 1 (𝐹𝐺) Struct ⟨𝐴, 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628  cop 4634   class class class wbr 5148  dom cdm 5676  Fun wfun 6537  cfv 6543  (class class class)co 7408   < clt 11247  cle 11248  cn 12211  cz 12557  cuz 12821  ...cfz 13483   Struct cstr 17078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079
This theorem is referenced by:  strle2  17091  strle3  17092  srngstr  17253  lmodstr  17269  ipsstr  17280  phlstr  17290  odrngstr  17347  imasvalstr  17396  prdsvalstr  17397  ipostr  18481  cnfldstr  20945  psrvalstr  21468  eengstr  28235  idlsrgstr  32611  algstr  41909
  Copyright terms: Public domain W3C validator