MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strleun Structured version   Visualization version   GIF version

Theorem strleun 17204
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f 𝐹 Struct ⟨𝐴, 𝐵
strleun.g 𝐺 Struct ⟨𝐶, 𝐷
strleun.l 𝐵 < 𝐶
Assertion
Ref Expression
strleun (𝐹𝐺) Struct ⟨𝐴, 𝐷

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6 𝐹 Struct ⟨𝐴, 𝐵
2 isstruct 17199 . . . . . 6 (𝐹 Struct ⟨𝐴, 𝐵⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2mpbi 230 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))
43simp1i 1139 . . . 4 (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵)
54simp1i 1139 . . 3 𝐴 ∈ ℕ
6 strleun.g . . . . . 6 𝐺 Struct ⟨𝐶, 𝐷
7 isstruct 17199 . . . . . 6 (𝐺 Struct ⟨𝐶, 𝐷⟩ ↔ ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7mpbi 230 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))
98simp1i 1139 . . . 4 (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷)
109simp2i 1140 . . 3 𝐷 ∈ ℕ
114simp3i 1141 . . . . 5 𝐴𝐵
124simp2i 1140 . . . . . . 7 𝐵 ∈ ℕ
1312nnrei 12302 . . . . . 6 𝐵 ∈ ℝ
149simp1i 1139 . . . . . . 7 𝐶 ∈ ℕ
1514nnrei 12302 . . . . . 6 𝐶 ∈ ℝ
16 strleun.l . . . . . 6 𝐵 < 𝐶
1713, 15, 16ltleii 11413 . . . . 5 𝐵𝐶
185nnrei 12302 . . . . . 6 𝐴 ∈ ℝ
1918, 13, 15letri 11419 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
2011, 17, 19mp2an 691 . . . 4 𝐴𝐶
219simp3i 1141 . . . 4 𝐶𝐷
2210nnrei 12302 . . . . 5 𝐷 ∈ ℝ
2318, 15, 22letri 11419 . . . 4 ((𝐴𝐶𝐶𝐷) → 𝐴𝐷)
2420, 21, 23mp2an 691 . . 3 𝐴𝐷
255, 10, 243pm3.2i 1339 . 2 (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷)
263simp2i 1140 . . . . 5 Fun (𝐹 ∖ {∅})
278simp2i 1140 . . . . 5 Fun (𝐺 ∖ {∅})
2826, 27pm3.2i 470 . . . 4 (Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅}))
29 difss 4159 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
30 dmss 5927 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
3129, 30ax-mp 5 . . . . . . 7 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
323simp3i 1141 . . . . . . 7 dom 𝐹 ⊆ (𝐴...𝐵)
3331, 32sstri 4018 . . . . . 6 dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)
34 difss 4159 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
35 dmss 5927 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3634, 35ax-mp 5 . . . . . . 7 dom (𝐺 ∖ {∅}) ⊆ dom 𝐺
378simp3i 1141 . . . . . . 7 dom 𝐺 ⊆ (𝐶...𝐷)
3836, 37sstri 4018 . . . . . 6 dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)
39 ss2in 4266 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
4033, 38, 39mp2an 691 . . . . 5 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷))
41 fzdisj 13611 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
4216, 41ax-mp 5 . . . . 5 ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅
43 sseq0 4426 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4440, 42, 43mp2an 691 . . . 4 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅
45 funun 6624 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4628, 44, 45mp2an 691 . . 3 Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
47 difundir 4310 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4847funeqi 6599 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4946, 48mpbir 231 . 2 Fun ((𝐹𝐺) ∖ {∅})
50 dmun 5935 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5112nnzi 12667 . . . . . . 7 𝐵 ∈ ℤ
5210nnzi 12667 . . . . . . 7 𝐷 ∈ ℤ
5313, 15, 22letri 11419 . . . . . . . 8 ((𝐵𝐶𝐶𝐷) → 𝐵𝐷)
5417, 21, 53mp2an 691 . . . . . . 7 𝐵𝐷
55 eluz2 12909 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5651, 52, 54, 55mpbir3an 1341 . . . . . 6 𝐷 ∈ (ℤ𝐵)
57 fzss2 13624 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5856, 57ax-mp 5 . . . . 5 (𝐴...𝐵) ⊆ (𝐴...𝐷)
5932, 58sstri 4018 . . . 4 dom 𝐹 ⊆ (𝐴...𝐷)
605nnzi 12667 . . . . . . 7 𝐴 ∈ ℤ
6114nnzi 12667 . . . . . . 7 𝐶 ∈ ℤ
62 eluz2 12909 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6360, 61, 20, 62mpbir3an 1341 . . . . . 6 𝐶 ∈ (ℤ𝐴)
64 fzss1 13623 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6563, 64ax-mp 5 . . . . 5 (𝐶...𝐷) ⊆ (𝐴...𝐷)
6637, 65sstri 4018 . . . 4 dom 𝐺 ⊆ (𝐴...𝐷)
6759, 66unssi 4214 . . 3 (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)
6850, 67eqsstri 4043 . 2 dom (𝐹𝐺) ⊆ (𝐴...𝐷)
69 isstruct 17199 . 2 ((𝐹𝐺) Struct ⟨𝐴, 𝐷⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ Fun ((𝐹𝐺) ∖ {∅}) ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷)))
7025, 49, 68, 69mpbir3an 1341 1 (𝐹𝐺) Struct ⟨𝐴, 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  dom cdm 5700  Fun wfun 6567  cfv 6573  (class class class)co 7448   < clt 11324  cle 11325  cn 12293  cz 12639  cuz 12903  ...cfz 13567   Struct cstr 17193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194
This theorem is referenced by:  strle2  17206  strle3  17207  srngstr  17368  lmodstr  17384  ipsstr  17395  phlstr  17405  odrngstr  17462  imasvalstr  17511  prdsvalstr  17512  ipostr  18599  cnfldstr  21389  cnfldstrOLD  21404  psrvalstr  21959  eengstr  29013  idlsrgstr  33495  algstr  43134
  Copyright terms: Public domain W3C validator