MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Visualization version   GIF version

Theorem divalglem6 16368
Description: Lemma for divalg 16373. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1 𝐴 ∈ ℕ
divalglem6.2 𝑋 ∈ (0...(𝐴 − 1))
divalglem6.3 𝐾 ∈ ℤ
Assertion
Ref Expression
divalglem6 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4 𝐾 ∈ ℤ
21zrei 12535 . . 3 𝐾 ∈ ℝ
3 0re 11176 . . 3 0 ∈ ℝ
42, 3lttri2i 11288 . 2 (𝐾 ≠ 0 ↔ (𝐾 < 0 ∨ 0 < 𝐾))
5 divalglem6.2 . . . . . . . . 9 𝑋 ∈ (0...(𝐴 − 1))
6 0z 12540 . . . . . . . . . 10 0 ∈ ℤ
7 divalglem6.1 . . . . . . . . . . 11 𝐴 ∈ ℕ
87nnzi 12557 . . . . . . . . . 10 𝐴 ∈ ℤ
9 elfzm11 13556 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)))
106, 8, 9mp2an 692 . . . . . . . . 9 (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴))
115, 10mpbi 230 . . . . . . . 8 (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)
1211simp3i 1141 . . . . . . 7 𝑋 < 𝐴
1311simp1i 1139 . . . . . . . . 9 𝑋 ∈ ℤ
1413zrei 12535 . . . . . . . 8 𝑋 ∈ ℝ
157nnrei 12195 . . . . . . . 8 𝐴 ∈ ℝ
162, 15remulcli 11190 . . . . . . . 8 (𝐾 · 𝐴) ∈ ℝ
1714, 15, 16ltadd1i 11732 . . . . . . 7 (𝑋 < 𝐴 ↔ (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)))
1812, 17mpbi 230 . . . . . 6 (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴))
192renegcli 11483 . . . . . . . 8 -𝐾 ∈ ℝ
207nnnn0i 12450 . . . . . . . . . 10 𝐴 ∈ ℕ0
2120nn0ge0i 12469 . . . . . . . . 9 0 ≤ 𝐴
22 lemulge12 12046 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ -𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2322an4s 660 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2415, 21, 23mpanl12 702 . . . . . . . 8 ((-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾) → 𝐴 ≤ (-𝐾 · 𝐴))
2519, 24mpan 690 . . . . . . 7 (1 ≤ -𝐾𝐴 ≤ (-𝐾 · 𝐴))
26 lt0neg1 11684 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 < 0 ↔ 0 < -𝐾))
272, 26ax-mp 5 . . . . . . . 8 (𝐾 < 0 ↔ 0 < -𝐾)
28 znegcl 12568 . . . . . . . . . . 11 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
291, 28ax-mp 5 . . . . . . . . . 10 -𝐾 ∈ ℤ
30 zltp1le 12583 . . . . . . . . . 10 ((0 ∈ ℤ ∧ -𝐾 ∈ ℤ) → (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾))
316, 29, 30mp2an 692 . . . . . . . . 9 (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾)
32 0p1e1 12303 . . . . . . . . . 10 (0 + 1) = 1
3332breq1i 5114 . . . . . . . . 9 ((0 + 1) ≤ -𝐾 ↔ 1 ≤ -𝐾)
3431, 33bitri 275 . . . . . . . 8 (0 < -𝐾 ↔ 1 ≤ -𝐾)
3527, 34bitri 275 . . . . . . 7 (𝐾 < 0 ↔ 1 ≤ -𝐾)
362recni 11188 . . . . . . . . . . . 12 𝐾 ∈ ℂ
3715recni 11188 . . . . . . . . . . . 12 𝐴 ∈ ℂ
3836, 37mulneg1i 11624 . . . . . . . . . . 11 (-𝐾 · 𝐴) = -(𝐾 · 𝐴)
3938oveq2i 7398 . . . . . . . . . 10 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 − -(𝐾 · 𝐴))
4016recni 11188 . . . . . . . . . . 11 (𝐾 · 𝐴) ∈ ℂ
4137, 40subnegi 11501 . . . . . . . . . 10 (𝐴 − -(𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4239, 41eqtri 2752 . . . . . . . . 9 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4342breq1i 5114 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4419, 15remulcli 11190 . . . . . . . . 9 (-𝐾 · 𝐴) ∈ ℝ
45 suble0 11692 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (-𝐾 · 𝐴) ∈ ℝ) → ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴)))
4615, 44, 45mp2an 692 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4743, 46bitr3i 277 . . . . . . 7 ((𝐴 + (𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4825, 35, 473imtr4i 292 . . . . . 6 (𝐾 < 0 → (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4914, 16readdcli 11189 . . . . . . 7 (𝑋 + (𝐾 · 𝐴)) ∈ ℝ
5015, 16readdcli 11189 . . . . . . 7 (𝐴 + (𝐾 · 𝐴)) ∈ ℝ
5149, 50, 3ltletri 11302 . . . . . 6 (((𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)) ∧ (𝐴 + (𝐾 · 𝐴)) ≤ 0) → (𝑋 + (𝐾 · 𝐴)) < 0)
5218, 48, 51sylancr 587 . . . . 5 (𝐾 < 0 → (𝑋 + (𝐾 · 𝐴)) < 0)
5349, 3ltnlei 11295 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) < 0 ↔ ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5452, 53sylib 218 . . . 4 (𝐾 < 0 → ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
55 elfzle1 13488 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5654, 55nsyl 140 . . 3 (𝐾 < 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
57 zltp1le 12583 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾))
586, 1, 57mp2an 692 . . . . . . . 8 (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾)
5932breq1i 5114 . . . . . . . 8 ((0 + 1) ≤ 𝐾 ↔ 1 ≤ 𝐾)
6058, 59bitri 275 . . . . . . 7 (0 < 𝐾 ↔ 1 ≤ 𝐾)
61 lemulge12 12046 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐾)) → 𝐴 ≤ (𝐾 · 𝐴))
6215, 2, 61mpanl12 702 . . . . . . . 8 ((0 ≤ 𝐴 ∧ 1 ≤ 𝐾) → 𝐴 ≤ (𝐾 · 𝐴))
6321, 62mpan 690 . . . . . . 7 (1 ≤ 𝐾𝐴 ≤ (𝐾 · 𝐴))
6460, 63sylbi 217 . . . . . 6 (0 < 𝐾𝐴 ≤ (𝐾 · 𝐴))
6511simp2i 1140 . . . . . . 7 0 ≤ 𝑋
66 addge02 11689 . . . . . . . 8 (((𝐾 · 𝐴) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))))
6716, 14, 66mp2an 692 . . . . . . 7 (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴)))
6865, 67mpbi 230 . . . . . 6 (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))
6915, 16, 49letri 11303 . . . . . 6 ((𝐴 ≤ (𝐾 · 𝐴) ∧ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))) → 𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7064, 68, 69sylancl 586 . . . . 5 (0 < 𝐾𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7115, 49lenlti 11294 . . . . 5 (𝐴 ≤ (𝑋 + (𝐾 · 𝐴)) ↔ ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7270, 71sylib 218 . . . 4 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
73 elfzm11 13556 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴)))
746, 8, 73mp2an 692 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴))
7574simp3bi 1147 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7672, 75nsyl 140 . . 3 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
7756, 76jaoi 857 . 2 ((𝐾 < 0 ∨ 0 < 𝐾) → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
784, 77sylbi 217 1 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  cz 12529  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  divalglem7  16369
  Copyright terms: Public domain W3C validator