MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Visualization version   GIF version

Theorem divalglem6 15739
Description: Lemma for divalg 15744. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1 𝐴 ∈ ℕ
divalglem6.2 𝑋 ∈ (0...(𝐴 − 1))
divalglem6.3 𝐾 ∈ ℤ
Assertion
Ref Expression
divalglem6 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4 𝐾 ∈ ℤ
21zrei 11975 . . 3 𝐾 ∈ ℝ
3 0re 10632 . . 3 0 ∈ ℝ
42, 3lttri2i 10743 . 2 (𝐾 ≠ 0 ↔ (𝐾 < 0 ∨ 0 < 𝐾))
5 divalglem6.2 . . . . . . . . 9 𝑋 ∈ (0...(𝐴 − 1))
6 0z 11980 . . . . . . . . . 10 0 ∈ ℤ
7 divalglem6.1 . . . . . . . . . . 11 𝐴 ∈ ℕ
87nnzi 11994 . . . . . . . . . 10 𝐴 ∈ ℤ
9 elfzm11 12973 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)))
106, 8, 9mp2an 691 . . . . . . . . 9 (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴))
115, 10mpbi 233 . . . . . . . 8 (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)
1211simp3i 1138 . . . . . . 7 𝑋 < 𝐴
1311simp1i 1136 . . . . . . . . 9 𝑋 ∈ ℤ
1413zrei 11975 . . . . . . . 8 𝑋 ∈ ℝ
157nnrei 11634 . . . . . . . 8 𝐴 ∈ ℝ
162, 15remulcli 10646 . . . . . . . 8 (𝐾 · 𝐴) ∈ ℝ
1714, 15, 16ltadd1i 11183 . . . . . . 7 (𝑋 < 𝐴 ↔ (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)))
1812, 17mpbi 233 . . . . . 6 (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴))
192renegcli 10936 . . . . . . . 8 -𝐾 ∈ ℝ
207nnnn0i 11893 . . . . . . . . . 10 𝐴 ∈ ℕ0
2120nn0ge0i 11912 . . . . . . . . 9 0 ≤ 𝐴
22 lemulge12 11492 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ -𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2322an4s 659 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2415, 21, 23mpanl12 701 . . . . . . . 8 ((-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾) → 𝐴 ≤ (-𝐾 · 𝐴))
2519, 24mpan 689 . . . . . . 7 (1 ≤ -𝐾𝐴 ≤ (-𝐾 · 𝐴))
26 lt0neg1 11135 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 < 0 ↔ 0 < -𝐾))
272, 26ax-mp 5 . . . . . . . 8 (𝐾 < 0 ↔ 0 < -𝐾)
28 znegcl 12005 . . . . . . . . . . 11 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
291, 28ax-mp 5 . . . . . . . . . 10 -𝐾 ∈ ℤ
30 zltp1le 12020 . . . . . . . . . 10 ((0 ∈ ℤ ∧ -𝐾 ∈ ℤ) → (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾))
316, 29, 30mp2an 691 . . . . . . . . 9 (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾)
32 0p1e1 11747 . . . . . . . . . 10 (0 + 1) = 1
3332breq1i 5037 . . . . . . . . 9 ((0 + 1) ≤ -𝐾 ↔ 1 ≤ -𝐾)
3431, 33bitri 278 . . . . . . . 8 (0 < -𝐾 ↔ 1 ≤ -𝐾)
3527, 34bitri 278 . . . . . . 7 (𝐾 < 0 ↔ 1 ≤ -𝐾)
362recni 10644 . . . . . . . . . . . 12 𝐾 ∈ ℂ
3715recni 10644 . . . . . . . . . . . 12 𝐴 ∈ ℂ
3836, 37mulneg1i 11075 . . . . . . . . . . 11 (-𝐾 · 𝐴) = -(𝐾 · 𝐴)
3938oveq2i 7146 . . . . . . . . . 10 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 − -(𝐾 · 𝐴))
4016recni 10644 . . . . . . . . . . 11 (𝐾 · 𝐴) ∈ ℂ
4137, 40subnegi 10954 . . . . . . . . . 10 (𝐴 − -(𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4239, 41eqtri 2821 . . . . . . . . 9 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4342breq1i 5037 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4419, 15remulcli 10646 . . . . . . . . 9 (-𝐾 · 𝐴) ∈ ℝ
45 suble0 11143 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (-𝐾 · 𝐴) ∈ ℝ) → ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴)))
4615, 44, 45mp2an 691 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4743, 46bitr3i 280 . . . . . . 7 ((𝐴 + (𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4825, 35, 473imtr4i 295 . . . . . 6 (𝐾 < 0 → (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4914, 16readdcli 10645 . . . . . . 7 (𝑋 + (𝐾 · 𝐴)) ∈ ℝ
5015, 16readdcli 10645 . . . . . . 7 (𝐴 + (𝐾 · 𝐴)) ∈ ℝ
5149, 50, 3ltletri 10757 . . . . . 6 (((𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)) ∧ (𝐴 + (𝐾 · 𝐴)) ≤ 0) → (𝑋 + (𝐾 · 𝐴)) < 0)
5218, 48, 51sylancr 590 . . . . 5 (𝐾 < 0 → (𝑋 + (𝐾 · 𝐴)) < 0)
5349, 3ltnlei 10750 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) < 0 ↔ ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5452, 53sylib 221 . . . 4 (𝐾 < 0 → ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
55 elfzle1 12905 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5654, 55nsyl 142 . . 3 (𝐾 < 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
57 zltp1le 12020 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾))
586, 1, 57mp2an 691 . . . . . . . 8 (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾)
5932breq1i 5037 . . . . . . . 8 ((0 + 1) ≤ 𝐾 ↔ 1 ≤ 𝐾)
6058, 59bitri 278 . . . . . . 7 (0 < 𝐾 ↔ 1 ≤ 𝐾)
61 lemulge12 11492 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐾)) → 𝐴 ≤ (𝐾 · 𝐴))
6215, 2, 61mpanl12 701 . . . . . . . 8 ((0 ≤ 𝐴 ∧ 1 ≤ 𝐾) → 𝐴 ≤ (𝐾 · 𝐴))
6321, 62mpan 689 . . . . . . 7 (1 ≤ 𝐾𝐴 ≤ (𝐾 · 𝐴))
6460, 63sylbi 220 . . . . . 6 (0 < 𝐾𝐴 ≤ (𝐾 · 𝐴))
6511simp2i 1137 . . . . . . 7 0 ≤ 𝑋
66 addge02 11140 . . . . . . . 8 (((𝐾 · 𝐴) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))))
6716, 14, 66mp2an 691 . . . . . . 7 (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴)))
6865, 67mpbi 233 . . . . . 6 (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))
6915, 16, 49letri 10758 . . . . . 6 ((𝐴 ≤ (𝐾 · 𝐴) ∧ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))) → 𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7064, 68, 69sylancl 589 . . . . 5 (0 < 𝐾𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7115, 49lenlti 10749 . . . . 5 (𝐴 ≤ (𝑋 + (𝐾 · 𝐴)) ↔ ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7270, 71sylib 221 . . . 4 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
73 elfzm11 12973 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴)))
746, 8, 73mp2an 691 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴))
7574simp3bi 1144 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7672, 75nsyl 142 . . 3 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
7756, 76jaoi 854 . 2 ((𝐾 < 0 ∨ 0 < 𝐾) → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
784, 77sylbi 220 1 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cn 11625  cz 11969  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  divalglem7  15740
  Copyright terms: Public domain W3C validator