MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Visualization version   GIF version

Theorem divalglem6 16107
Description: Lemma for divalg 16112. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1 𝐴 ∈ ℕ
divalglem6.2 𝑋 ∈ (0...(𝐴 − 1))
divalglem6.3 𝐾 ∈ ℤ
Assertion
Ref Expression
divalglem6 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4 𝐾 ∈ ℤ
21zrei 12325 . . 3 𝐾 ∈ ℝ
3 0re 10977 . . 3 0 ∈ ℝ
42, 3lttri2i 11089 . 2 (𝐾 ≠ 0 ↔ (𝐾 < 0 ∨ 0 < 𝐾))
5 divalglem6.2 . . . . . . . . 9 𝑋 ∈ (0...(𝐴 − 1))
6 0z 12330 . . . . . . . . . 10 0 ∈ ℤ
7 divalglem6.1 . . . . . . . . . . 11 𝐴 ∈ ℕ
87nnzi 12344 . . . . . . . . . 10 𝐴 ∈ ℤ
9 elfzm11 13327 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)))
106, 8, 9mp2an 689 . . . . . . . . 9 (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴))
115, 10mpbi 229 . . . . . . . 8 (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)
1211simp3i 1140 . . . . . . 7 𝑋 < 𝐴
1311simp1i 1138 . . . . . . . . 9 𝑋 ∈ ℤ
1413zrei 12325 . . . . . . . 8 𝑋 ∈ ℝ
157nnrei 11982 . . . . . . . 8 𝐴 ∈ ℝ
162, 15remulcli 10991 . . . . . . . 8 (𝐾 · 𝐴) ∈ ℝ
1714, 15, 16ltadd1i 11529 . . . . . . 7 (𝑋 < 𝐴 ↔ (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)))
1812, 17mpbi 229 . . . . . 6 (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴))
192renegcli 11282 . . . . . . . 8 -𝐾 ∈ ℝ
207nnnn0i 12241 . . . . . . . . . 10 𝐴 ∈ ℕ0
2120nn0ge0i 12260 . . . . . . . . 9 0 ≤ 𝐴
22 lemulge12 11838 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ -𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2322an4s 657 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2415, 21, 23mpanl12 699 . . . . . . . 8 ((-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾) → 𝐴 ≤ (-𝐾 · 𝐴))
2519, 24mpan 687 . . . . . . 7 (1 ≤ -𝐾𝐴 ≤ (-𝐾 · 𝐴))
26 lt0neg1 11481 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 < 0 ↔ 0 < -𝐾))
272, 26ax-mp 5 . . . . . . . 8 (𝐾 < 0 ↔ 0 < -𝐾)
28 znegcl 12355 . . . . . . . . . . 11 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
291, 28ax-mp 5 . . . . . . . . . 10 -𝐾 ∈ ℤ
30 zltp1le 12370 . . . . . . . . . 10 ((0 ∈ ℤ ∧ -𝐾 ∈ ℤ) → (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾))
316, 29, 30mp2an 689 . . . . . . . . 9 (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾)
32 0p1e1 12095 . . . . . . . . . 10 (0 + 1) = 1
3332breq1i 5081 . . . . . . . . 9 ((0 + 1) ≤ -𝐾 ↔ 1 ≤ -𝐾)
3431, 33bitri 274 . . . . . . . 8 (0 < -𝐾 ↔ 1 ≤ -𝐾)
3527, 34bitri 274 . . . . . . 7 (𝐾 < 0 ↔ 1 ≤ -𝐾)
362recni 10989 . . . . . . . . . . . 12 𝐾 ∈ ℂ
3715recni 10989 . . . . . . . . . . . 12 𝐴 ∈ ℂ
3836, 37mulneg1i 11421 . . . . . . . . . . 11 (-𝐾 · 𝐴) = -(𝐾 · 𝐴)
3938oveq2i 7286 . . . . . . . . . 10 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 − -(𝐾 · 𝐴))
4016recni 10989 . . . . . . . . . . 11 (𝐾 · 𝐴) ∈ ℂ
4137, 40subnegi 11300 . . . . . . . . . 10 (𝐴 − -(𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4239, 41eqtri 2766 . . . . . . . . 9 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4342breq1i 5081 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4419, 15remulcli 10991 . . . . . . . . 9 (-𝐾 · 𝐴) ∈ ℝ
45 suble0 11489 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (-𝐾 · 𝐴) ∈ ℝ) → ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴)))
4615, 44, 45mp2an 689 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4743, 46bitr3i 276 . . . . . . 7 ((𝐴 + (𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4825, 35, 473imtr4i 292 . . . . . 6 (𝐾 < 0 → (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4914, 16readdcli 10990 . . . . . . 7 (𝑋 + (𝐾 · 𝐴)) ∈ ℝ
5015, 16readdcli 10990 . . . . . . 7 (𝐴 + (𝐾 · 𝐴)) ∈ ℝ
5149, 50, 3ltletri 11103 . . . . . 6 (((𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)) ∧ (𝐴 + (𝐾 · 𝐴)) ≤ 0) → (𝑋 + (𝐾 · 𝐴)) < 0)
5218, 48, 51sylancr 587 . . . . 5 (𝐾 < 0 → (𝑋 + (𝐾 · 𝐴)) < 0)
5349, 3ltnlei 11096 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) < 0 ↔ ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5452, 53sylib 217 . . . 4 (𝐾 < 0 → ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
55 elfzle1 13259 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5654, 55nsyl 140 . . 3 (𝐾 < 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
57 zltp1le 12370 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾))
586, 1, 57mp2an 689 . . . . . . . 8 (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾)
5932breq1i 5081 . . . . . . . 8 ((0 + 1) ≤ 𝐾 ↔ 1 ≤ 𝐾)
6058, 59bitri 274 . . . . . . 7 (0 < 𝐾 ↔ 1 ≤ 𝐾)
61 lemulge12 11838 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐾)) → 𝐴 ≤ (𝐾 · 𝐴))
6215, 2, 61mpanl12 699 . . . . . . . 8 ((0 ≤ 𝐴 ∧ 1 ≤ 𝐾) → 𝐴 ≤ (𝐾 · 𝐴))
6321, 62mpan 687 . . . . . . 7 (1 ≤ 𝐾𝐴 ≤ (𝐾 · 𝐴))
6460, 63sylbi 216 . . . . . 6 (0 < 𝐾𝐴 ≤ (𝐾 · 𝐴))
6511simp2i 1139 . . . . . . 7 0 ≤ 𝑋
66 addge02 11486 . . . . . . . 8 (((𝐾 · 𝐴) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))))
6716, 14, 66mp2an 689 . . . . . . 7 (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴)))
6865, 67mpbi 229 . . . . . 6 (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))
6915, 16, 49letri 11104 . . . . . 6 ((𝐴 ≤ (𝐾 · 𝐴) ∧ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))) → 𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7064, 68, 69sylancl 586 . . . . 5 (0 < 𝐾𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7115, 49lenlti 11095 . . . . 5 (𝐴 ≤ (𝑋 + (𝐾 · 𝐴)) ↔ ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7270, 71sylib 217 . . . 4 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
73 elfzm11 13327 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴)))
746, 8, 73mp2an 689 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴))
7574simp3bi 1146 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7672, 75nsyl 140 . . 3 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
7756, 76jaoi 854 . 2 ((𝐾 < 0 ∨ 0 < 𝐾) → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
784, 77sylbi 216 1 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206  cn 11973  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  divalglem7  16108
  Copyright terms: Public domain W3C validator