MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Visualization version   GIF version

Theorem divalglem6 16446
Description: Lemma for divalg 16451. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1 𝐴 ∈ ℕ
divalglem6.2 𝑋 ∈ (0...(𝐴 − 1))
divalglem6.3 𝐾 ∈ ℤ
Assertion
Ref Expression
divalglem6 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4 𝐾 ∈ ℤ
21zrei 12645 . . 3 𝐾 ∈ ℝ
3 0re 11292 . . 3 0 ∈ ℝ
42, 3lttri2i 11404 . 2 (𝐾 ≠ 0 ↔ (𝐾 < 0 ∨ 0 < 𝐾))
5 divalglem6.2 . . . . . . . . 9 𝑋 ∈ (0...(𝐴 − 1))
6 0z 12650 . . . . . . . . . 10 0 ∈ ℤ
7 divalglem6.1 . . . . . . . . . . 11 𝐴 ∈ ℕ
87nnzi 12667 . . . . . . . . . 10 𝐴 ∈ ℤ
9 elfzm11 13655 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)))
106, 8, 9mp2an 691 . . . . . . . . 9 (𝑋 ∈ (0...(𝐴 − 1)) ↔ (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴))
115, 10mpbi 230 . . . . . . . 8 (𝑋 ∈ ℤ ∧ 0 ≤ 𝑋𝑋 < 𝐴)
1211simp3i 1141 . . . . . . 7 𝑋 < 𝐴
1311simp1i 1139 . . . . . . . . 9 𝑋 ∈ ℤ
1413zrei 12645 . . . . . . . 8 𝑋 ∈ ℝ
157nnrei 12302 . . . . . . . 8 𝐴 ∈ ℝ
162, 15remulcli 11306 . . . . . . . 8 (𝐾 · 𝐴) ∈ ℝ
1714, 15, 16ltadd1i 11844 . . . . . . 7 (𝑋 < 𝐴 ↔ (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)))
1812, 17mpbi 230 . . . . . 6 (𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴))
192renegcli 11597 . . . . . . . 8 -𝐾 ∈ ℝ
207nnnn0i 12561 . . . . . . . . . 10 𝐴 ∈ ℕ0
2120nn0ge0i 12580 . . . . . . . . 9 0 ≤ 𝐴
22 lemulge12 12158 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ -𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2322an4s 659 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾)) → 𝐴 ≤ (-𝐾 · 𝐴))
2415, 21, 23mpanl12 701 . . . . . . . 8 ((-𝐾 ∈ ℝ ∧ 1 ≤ -𝐾) → 𝐴 ≤ (-𝐾 · 𝐴))
2519, 24mpan 689 . . . . . . 7 (1 ≤ -𝐾𝐴 ≤ (-𝐾 · 𝐴))
26 lt0neg1 11796 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 < 0 ↔ 0 < -𝐾))
272, 26ax-mp 5 . . . . . . . 8 (𝐾 < 0 ↔ 0 < -𝐾)
28 znegcl 12678 . . . . . . . . . . 11 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
291, 28ax-mp 5 . . . . . . . . . 10 -𝐾 ∈ ℤ
30 zltp1le 12693 . . . . . . . . . 10 ((0 ∈ ℤ ∧ -𝐾 ∈ ℤ) → (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾))
316, 29, 30mp2an 691 . . . . . . . . 9 (0 < -𝐾 ↔ (0 + 1) ≤ -𝐾)
32 0p1e1 12415 . . . . . . . . . 10 (0 + 1) = 1
3332breq1i 5173 . . . . . . . . 9 ((0 + 1) ≤ -𝐾 ↔ 1 ≤ -𝐾)
3431, 33bitri 275 . . . . . . . 8 (0 < -𝐾 ↔ 1 ≤ -𝐾)
3527, 34bitri 275 . . . . . . 7 (𝐾 < 0 ↔ 1 ≤ -𝐾)
362recni 11304 . . . . . . . . . . . 12 𝐾 ∈ ℂ
3715recni 11304 . . . . . . . . . . . 12 𝐴 ∈ ℂ
3836, 37mulneg1i 11736 . . . . . . . . . . 11 (-𝐾 · 𝐴) = -(𝐾 · 𝐴)
3938oveq2i 7459 . . . . . . . . . 10 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 − -(𝐾 · 𝐴))
4016recni 11304 . . . . . . . . . . 11 (𝐾 · 𝐴) ∈ ℂ
4137, 40subnegi 11615 . . . . . . . . . 10 (𝐴 − -(𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4239, 41eqtri 2768 . . . . . . . . 9 (𝐴 − (-𝐾 · 𝐴)) = (𝐴 + (𝐾 · 𝐴))
4342breq1i 5173 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4419, 15remulcli 11306 . . . . . . . . 9 (-𝐾 · 𝐴) ∈ ℝ
45 suble0 11804 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (-𝐾 · 𝐴) ∈ ℝ) → ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴)))
4615, 44, 45mp2an 691 . . . . . . . 8 ((𝐴 − (-𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4743, 46bitr3i 277 . . . . . . 7 ((𝐴 + (𝐾 · 𝐴)) ≤ 0 ↔ 𝐴 ≤ (-𝐾 · 𝐴))
4825, 35, 473imtr4i 292 . . . . . 6 (𝐾 < 0 → (𝐴 + (𝐾 · 𝐴)) ≤ 0)
4914, 16readdcli 11305 . . . . . . 7 (𝑋 + (𝐾 · 𝐴)) ∈ ℝ
5015, 16readdcli 11305 . . . . . . 7 (𝐴 + (𝐾 · 𝐴)) ∈ ℝ
5149, 50, 3ltletri 11418 . . . . . 6 (((𝑋 + (𝐾 · 𝐴)) < (𝐴 + (𝐾 · 𝐴)) ∧ (𝐴 + (𝐾 · 𝐴)) ≤ 0) → (𝑋 + (𝐾 · 𝐴)) < 0)
5218, 48, 51sylancr 586 . . . . 5 (𝐾 < 0 → (𝑋 + (𝐾 · 𝐴)) < 0)
5349, 3ltnlei 11411 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) < 0 ↔ ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5452, 53sylib 218 . . . 4 (𝐾 < 0 → ¬ 0 ≤ (𝑋 + (𝐾 · 𝐴)))
55 elfzle1 13587 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → 0 ≤ (𝑋 + (𝐾 · 𝐴)))
5654, 55nsyl 140 . . 3 (𝐾 < 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
57 zltp1le 12693 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾))
586, 1, 57mp2an 691 . . . . . . . 8 (0 < 𝐾 ↔ (0 + 1) ≤ 𝐾)
5932breq1i 5173 . . . . . . . 8 ((0 + 1) ≤ 𝐾 ↔ 1 ≤ 𝐾)
6058, 59bitri 275 . . . . . . 7 (0 < 𝐾 ↔ 1 ≤ 𝐾)
61 lemulge12 12158 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐾)) → 𝐴 ≤ (𝐾 · 𝐴))
6215, 2, 61mpanl12 701 . . . . . . . 8 ((0 ≤ 𝐴 ∧ 1 ≤ 𝐾) → 𝐴 ≤ (𝐾 · 𝐴))
6321, 62mpan 689 . . . . . . 7 (1 ≤ 𝐾𝐴 ≤ (𝐾 · 𝐴))
6460, 63sylbi 217 . . . . . 6 (0 < 𝐾𝐴 ≤ (𝐾 · 𝐴))
6511simp2i 1140 . . . . . . 7 0 ≤ 𝑋
66 addge02 11801 . . . . . . . 8 (((𝐾 · 𝐴) ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))))
6716, 14, 66mp2an 691 . . . . . . 7 (0 ≤ 𝑋 ↔ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴)))
6865, 67mpbi 230 . . . . . 6 (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))
6915, 16, 49letri 11419 . . . . . 6 ((𝐴 ≤ (𝐾 · 𝐴) ∧ (𝐾 · 𝐴) ≤ (𝑋 + (𝐾 · 𝐴))) → 𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7064, 68, 69sylancl 585 . . . . 5 (0 < 𝐾𝐴 ≤ (𝑋 + (𝐾 · 𝐴)))
7115, 49lenlti 11410 . . . . 5 (𝐴 ≤ (𝑋 + (𝐾 · 𝐴)) ↔ ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7270, 71sylib 218 . . . 4 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) < 𝐴)
73 elfzm11 13655 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴)))
746, 8, 73mp2an 691 . . . . 5 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) ↔ ((𝑋 + (𝐾 · 𝐴)) ∈ ℤ ∧ 0 ≤ (𝑋 + (𝐾 · 𝐴)) ∧ (𝑋 + (𝐾 · 𝐴)) < 𝐴))
7574simp3bi 1147 . . . 4 ((𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)) → (𝑋 + (𝐾 · 𝐴)) < 𝐴)
7672, 75nsyl 140 . . 3 (0 < 𝐾 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
7756, 76jaoi 856 . 2 ((𝐾 < 0 ∨ 0 < 𝐾) → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
784, 77sylbi 217 1 (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cn 12293  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  divalglem7  16447
  Copyright terms: Public domain W3C validator