MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthday Structured version   Visualization version   GIF version

Theorem birthday 26898
Description: The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
birthday.k 𝐾 = 23
birthday.n 𝑁 = 365
Assertion
Ref Expression
birthday ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthday
StepHypRef Expression
1 birthday.k . . . 4 𝐾 = 23
2 2nn0 12437 . . . . 5 2 ∈ ℕ0
3 3nn0 12438 . . . . 5 3 ∈ ℕ0
42, 3deccl 12642 . . . 4 23 ∈ ℕ0
51, 4eqeltri 2824 . . 3 𝐾 ∈ ℕ0
6 birthday.n . . . 4 𝑁 = 365
7 6nn0 12441 . . . . . 6 6 ∈ ℕ0
83, 7deccl 12642 . . . . 5 36 ∈ ℕ0
9 5nn 12250 . . . . 5 5 ∈ ℕ
108, 9decnncl 12647 . . . 4 365 ∈ ℕ
116, 10eqeltri 2824 . . 3 𝑁 ∈ ℕ
12 birthday.s . . . 4 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
13 birthday.t . . . 4 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
1412, 13birthdaylem3 26897 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
155, 11, 14mp2an 692 . 2 ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))
16 log2ub 26893 . . . . . 6 (log‘2) < (253 / 365)
175nn0cni 12432 . . . . . . . . . . . 12 𝐾 ∈ ℂ
1817sqvali 14123 . . . . . . . . . . 11 (𝐾↑2) = (𝐾 · 𝐾)
1917mulridi 11156 . . . . . . . . . . . 12 (𝐾 · 1) = 𝐾
2019eqcomi 2738 . . . . . . . . . . 11 𝐾 = (𝐾 · 1)
2118, 20oveq12i 7381 . . . . . . . . . 10 ((𝐾↑2) − 𝐾) = ((𝐾 · 𝐾) − (𝐾 · 1))
22 ax-1cn 11104 . . . . . . . . . . 11 1 ∈ ℂ
2317, 17, 22subdii 11605 . . . . . . . . . 10 (𝐾 · (𝐾 − 1)) = ((𝐾 · 𝐾) − (𝐾 · 1))
2421, 23eqtr4i 2755 . . . . . . . . 9 ((𝐾↑2) − 𝐾) = (𝐾 · (𝐾 − 1))
2524oveq1i 7379 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) = ((𝐾 · (𝐾 − 1)) / 2)
2617, 22subcli 11476 . . . . . . . . 9 (𝐾 − 1) ∈ ℂ
27 2cn 12239 . . . . . . . . 9 2 ∈ ℂ
28 2ne0 12268 . . . . . . . . 9 2 ≠ 0
2917, 26, 27, 28divassi 11916 . . . . . . . 8 ((𝐾 · (𝐾 − 1)) / 2) = (𝐾 · ((𝐾 − 1) / 2))
30 1nn0 12436 . . . . . . . . 9 1 ∈ ℕ0
312, 2deccl 12642 . . . . . . . . . . . . 13 22 ∈ ℕ0
3231nn0cni 12432 . . . . . . . . . . . 12 22 ∈ ℂ
33 2p1e3 12301 . . . . . . . . . . . . . 14 (2 + 1) = 3
34 eqid 2729 . . . . . . . . . . . . . 14 22 = 22
352, 2, 33, 34decsuc 12658 . . . . . . . . . . . . 13 (22 + 1) = 23
361, 35eqtr4i 2755 . . . . . . . . . . . 12 𝐾 = (22 + 1)
3732, 22, 36mvrraddi 11416 . . . . . . . . . . 11 (𝐾 − 1) = 22
3837oveq1i 7379 . . . . . . . . . 10 ((𝐾 − 1) / 2) = (22 / 2)
39211multnc 12695 . . . . . . . . . . 11 (2 · 11) = 22
4030, 30deccl 12642 . . . . . . . . . . . . 13 11 ∈ ℕ0
4140nn0cni 12432 . . . . . . . . . . . 12 11 ∈ ℂ
4232, 27, 41, 28divmuli 11914 . . . . . . . . . . 11 ((22 / 2) = 11 ↔ (2 · 11) = 22)
4339, 42mpbir 231 . . . . . . . . . 10 (22 / 2) = 11
4438, 43eqtri 2752 . . . . . . . . 9 ((𝐾 − 1) / 2) = 11
4519, 1eqtri 2752 . . . . . . . . . 10 (𝐾 · 1) = 23
46 3p2e5 12310 . . . . . . . . . 10 (3 + 2) = 5
472, 3, 2, 45, 46decaddi 12687 . . . . . . . . 9 ((𝐾 · 1) + 2) = 25
485, 30, 30, 44, 3, 2, 47, 45decmul2c 12693 . . . . . . . 8 (𝐾 · ((𝐾 − 1) / 2)) = 253
4925, 29, 483eqtri 2756 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) = 253
5049, 6oveq12i 7381 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) = (253 / 365)
5116, 50breqtrri 5129 . . . . 5 (log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁)
52 2rp 12934 . . . . . . 7 2 ∈ ℝ+
53 relogcl 26518 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5452, 53ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
55 5nn0 12440 . . . . . . . . . . 11 5 ∈ ℕ0
562, 55deccl 12642 . . . . . . . . . 10 25 ∈ ℕ0
5756, 3deccl 12642 . . . . . . . . 9 253 ∈ ℕ0
5849, 57eqeltri 2824 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) ∈ ℕ0
5958nn0rei 12431 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) ∈ ℝ
60 nndivre 12205 . . . . . . 7 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
6159, 11, 60mp2an 692 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6254, 61ltnegi 11700 . . . . 5 ((log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2))
6351, 62mpbi 230 . . . 4 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2)
6461renegcli 11461 . . . . 5 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6554renegcli 11461 . . . . 5 -(log‘2) ∈ ℝ
66 eflt 16062 . . . . 5 ((-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ ∧ -(log‘2) ∈ ℝ) → (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))))
6764, 65, 66mp2an 692 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2)))
6863, 67mpbi 230 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))
6954recni 11166 . . . . 5 (log‘2) ∈ ℂ
70 efneg 16043 . . . . 5 ((log‘2) ∈ ℂ → (exp‘-(log‘2)) = (1 / (exp‘(log‘2))))
7169, 70ax-mp 5 . . . 4 (exp‘-(log‘2)) = (1 / (exp‘(log‘2)))
72 reeflog 26523 . . . . . 6 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
7352, 72ax-mp 5 . . . . 5 (exp‘(log‘2)) = 2
7473oveq2i 7380 . . . 4 (1 / (exp‘(log‘2))) = (1 / 2)
7571, 74eqtri 2752 . . 3 (exp‘-(log‘2)) = (1 / 2)
7668, 75breqtri 5127 . 2 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)
7712, 13birthdaylem1 26895 . . . . . . . 8 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
7877simp2i 1140 . . . . . . 7 𝑆 ∈ Fin
7977simp1i 1139 . . . . . . 7 𝑇𝑆
80 ssfi 9114 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑇𝑆) → 𝑇 ∈ Fin)
8178, 79, 80mp2an 692 . . . . . 6 𝑇 ∈ Fin
82 hashcl 14299 . . . . . 6 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
8381, 82ax-mp 5 . . . . 5 (♯‘𝑇) ∈ ℕ0
8483nn0rei 12431 . . . 4 (♯‘𝑇) ∈ ℝ
8577simp3i 1141 . . . . . 6 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
8611, 85ax-mp 5 . . . . 5 𝑆 ≠ ∅
87 hashnncl 14309 . . . . . 6 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
8878, 87ax-mp 5 . . . . 5 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
8986, 88mpbir 231 . . . 4 (♯‘𝑆) ∈ ℕ
90 nndivre 12205 . . . 4 (((♯‘𝑇) ∈ ℝ ∧ (♯‘𝑆) ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ)
9184, 89, 90mp2an 692 . . 3 ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ
92 reefcl 16030 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ)
9364, 92ax-mp 5 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ
94 halfre 12373 . . 3 (1 / 2) ∈ ℝ
9591, 93, 94lelttri 11279 . 2 ((((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∧ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)) → ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2))
9615, 76, 95mp2an 692 1 ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wss 3911  c0 4292   class class class wbr 5102  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11044  cr 11045  1c1 11047   + caddc 11049   · cmul 11051   < clt 11186  cle 11187  cmin 11383  -cneg 11384   / cdiv 11813  cn 12164  2c2 12219  3c3 12220  5c5 12222  6c6 12223  0cn0 12420  cdc 12627  +crp 12929  ...cfz 13446  cexp 14004  chash 14273  expce 16004  logclog 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-xnn0 12494  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-tan 16014  df-pi 16015  df-dvds 16200  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-cmp 23308  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-limc 25801  df-dv 25802  df-ulm 26320  df-log 26499  df-atan 26811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator