MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthday Structured version   Visualization version   GIF version

Theorem birthday 26997
Description: The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
birthday.k 𝐾 = 23
birthday.n 𝑁 = 365
Assertion
Ref Expression
birthday ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthday
StepHypRef Expression
1 birthday.k . . . 4 𝐾 = 23
2 2nn0 12543 . . . . 5 2 ∈ ℕ0
3 3nn0 12544 . . . . 5 3 ∈ ℕ0
42, 3deccl 12748 . . . 4 23 ∈ ℕ0
51, 4eqeltri 2837 . . 3 𝐾 ∈ ℕ0
6 birthday.n . . . 4 𝑁 = 365
7 6nn0 12547 . . . . . 6 6 ∈ ℕ0
83, 7deccl 12748 . . . . 5 36 ∈ ℕ0
9 5nn 12352 . . . . 5 5 ∈ ℕ
108, 9decnncl 12753 . . . 4 365 ∈ ℕ
116, 10eqeltri 2837 . . 3 𝑁 ∈ ℕ
12 birthday.s . . . 4 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
13 birthday.t . . . 4 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
1412, 13birthdaylem3 26996 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
155, 11, 14mp2an 692 . 2 ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))
16 log2ub 26992 . . . . . 6 (log‘2) < (253 / 365)
175nn0cni 12538 . . . . . . . . . . . 12 𝐾 ∈ ℂ
1817sqvali 14219 . . . . . . . . . . 11 (𝐾↑2) = (𝐾 · 𝐾)
1917mulridi 11265 . . . . . . . . . . . 12 (𝐾 · 1) = 𝐾
2019eqcomi 2746 . . . . . . . . . . 11 𝐾 = (𝐾 · 1)
2118, 20oveq12i 7443 . . . . . . . . . 10 ((𝐾↑2) − 𝐾) = ((𝐾 · 𝐾) − (𝐾 · 1))
22 ax-1cn 11213 . . . . . . . . . . 11 1 ∈ ℂ
2317, 17, 22subdii 11712 . . . . . . . . . 10 (𝐾 · (𝐾 − 1)) = ((𝐾 · 𝐾) − (𝐾 · 1))
2421, 23eqtr4i 2768 . . . . . . . . 9 ((𝐾↑2) − 𝐾) = (𝐾 · (𝐾 − 1))
2524oveq1i 7441 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) = ((𝐾 · (𝐾 − 1)) / 2)
2617, 22subcli 11585 . . . . . . . . 9 (𝐾 − 1) ∈ ℂ
27 2cn 12341 . . . . . . . . 9 2 ∈ ℂ
28 2ne0 12370 . . . . . . . . 9 2 ≠ 0
2917, 26, 27, 28divassi 12023 . . . . . . . 8 ((𝐾 · (𝐾 − 1)) / 2) = (𝐾 · ((𝐾 − 1) / 2))
30 1nn0 12542 . . . . . . . . 9 1 ∈ ℕ0
312, 2deccl 12748 . . . . . . . . . . . . 13 22 ∈ ℕ0
3231nn0cni 12538 . . . . . . . . . . . 12 22 ∈ ℂ
33 2p1e3 12408 . . . . . . . . . . . . . 14 (2 + 1) = 3
34 eqid 2737 . . . . . . . . . . . . . 14 22 = 22
352, 2, 33, 34decsuc 12764 . . . . . . . . . . . . 13 (22 + 1) = 23
361, 35eqtr4i 2768 . . . . . . . . . . . 12 𝐾 = (22 + 1)
3732, 22, 36mvrraddi 11525 . . . . . . . . . . 11 (𝐾 − 1) = 22
3837oveq1i 7441 . . . . . . . . . 10 ((𝐾 − 1) / 2) = (22 / 2)
39211multnc 12801 . . . . . . . . . . 11 (2 · 11) = 22
4030, 30deccl 12748 . . . . . . . . . . . . 13 11 ∈ ℕ0
4140nn0cni 12538 . . . . . . . . . . . 12 11 ∈ ℂ
4232, 27, 41, 28divmuli 12021 . . . . . . . . . . 11 ((22 / 2) = 11 ↔ (2 · 11) = 22)
4339, 42mpbir 231 . . . . . . . . . 10 (22 / 2) = 11
4438, 43eqtri 2765 . . . . . . . . 9 ((𝐾 − 1) / 2) = 11
4519, 1eqtri 2765 . . . . . . . . . 10 (𝐾 · 1) = 23
46 3p2e5 12417 . . . . . . . . . 10 (3 + 2) = 5
472, 3, 2, 45, 46decaddi 12793 . . . . . . . . 9 ((𝐾 · 1) + 2) = 25
485, 30, 30, 44, 3, 2, 47, 45decmul2c 12799 . . . . . . . 8 (𝐾 · ((𝐾 − 1) / 2)) = 253
4925, 29, 483eqtri 2769 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) = 253
5049, 6oveq12i 7443 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) = (253 / 365)
5116, 50breqtrri 5170 . . . . 5 (log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁)
52 2rp 13039 . . . . . . 7 2 ∈ ℝ+
53 relogcl 26617 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5452, 53ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
55 5nn0 12546 . . . . . . . . . . 11 5 ∈ ℕ0
562, 55deccl 12748 . . . . . . . . . 10 25 ∈ ℕ0
5756, 3deccl 12748 . . . . . . . . 9 253 ∈ ℕ0
5849, 57eqeltri 2837 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) ∈ ℕ0
5958nn0rei 12537 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) ∈ ℝ
60 nndivre 12307 . . . . . . 7 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
6159, 11, 60mp2an 692 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6254, 61ltnegi 11807 . . . . 5 ((log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2))
6351, 62mpbi 230 . . . 4 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2)
6461renegcli 11570 . . . . 5 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6554renegcli 11570 . . . . 5 -(log‘2) ∈ ℝ
66 eflt 16153 . . . . 5 ((-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ ∧ -(log‘2) ∈ ℝ) → (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))))
6764, 65, 66mp2an 692 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2)))
6863, 67mpbi 230 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))
6954recni 11275 . . . . 5 (log‘2) ∈ ℂ
70 efneg 16134 . . . . 5 ((log‘2) ∈ ℂ → (exp‘-(log‘2)) = (1 / (exp‘(log‘2))))
7169, 70ax-mp 5 . . . 4 (exp‘-(log‘2)) = (1 / (exp‘(log‘2)))
72 reeflog 26622 . . . . . 6 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
7352, 72ax-mp 5 . . . . 5 (exp‘(log‘2)) = 2
7473oveq2i 7442 . . . 4 (1 / (exp‘(log‘2))) = (1 / 2)
7571, 74eqtri 2765 . . 3 (exp‘-(log‘2)) = (1 / 2)
7668, 75breqtri 5168 . 2 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)
7712, 13birthdaylem1 26994 . . . . . . . 8 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
7877simp2i 1141 . . . . . . 7 𝑆 ∈ Fin
7977simp1i 1140 . . . . . . 7 𝑇𝑆
80 ssfi 9213 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑇𝑆) → 𝑇 ∈ Fin)
8178, 79, 80mp2an 692 . . . . . 6 𝑇 ∈ Fin
82 hashcl 14395 . . . . . 6 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
8381, 82ax-mp 5 . . . . 5 (♯‘𝑇) ∈ ℕ0
8483nn0rei 12537 . . . 4 (♯‘𝑇) ∈ ℝ
8577simp3i 1142 . . . . . 6 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
8611, 85ax-mp 5 . . . . 5 𝑆 ≠ ∅
87 hashnncl 14405 . . . . . 6 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
8878, 87ax-mp 5 . . . . 5 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
8986, 88mpbir 231 . . . 4 (♯‘𝑆) ∈ ℕ
90 nndivre 12307 . . . 4 (((♯‘𝑇) ∈ ℝ ∧ (♯‘𝑆) ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ)
9184, 89, 90mp2an 692 . . 3 ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ
92 reefcl 16123 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ)
9364, 92ax-mp 5 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ
94 halfre 12480 . . 3 (1 / 2) ∈ ℝ
9591, 93, 94lelttri 11388 . 2 ((((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∧ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)) → ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2))
9615, 76, 95mp2an 692 1 ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wss 3951  c0 4333   class class class wbr 5143  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  5c5 12324  6c6 12325  0cn0 12526  cdc 12733  +crp 13034  ...cfz 13547  cexp 14102  chash 14369  expce 16097  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-atan 26910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator