MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthday Structured version   Visualization version   GIF version

Theorem birthday 27012
Description: The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
birthday.k 𝐾 = 23
birthday.n 𝑁 = 365
Assertion
Ref Expression
birthday ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthday
StepHypRef Expression
1 birthday.k . . . 4 𝐾 = 23
2 2nn0 12541 . . . . 5 2 ∈ ℕ0
3 3nn0 12542 . . . . 5 3 ∈ ℕ0
42, 3deccl 12746 . . . 4 23 ∈ ℕ0
51, 4eqeltri 2835 . . 3 𝐾 ∈ ℕ0
6 birthday.n . . . 4 𝑁 = 365
7 6nn0 12545 . . . . . 6 6 ∈ ℕ0
83, 7deccl 12746 . . . . 5 36 ∈ ℕ0
9 5nn 12350 . . . . 5 5 ∈ ℕ
108, 9decnncl 12751 . . . 4 365 ∈ ℕ
116, 10eqeltri 2835 . . 3 𝑁 ∈ ℕ
12 birthday.s . . . 4 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
13 birthday.t . . . 4 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
1412, 13birthdaylem3 27011 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
155, 11, 14mp2an 692 . 2 ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))
16 log2ub 27007 . . . . . 6 (log‘2) < (253 / 365)
175nn0cni 12536 . . . . . . . . . . . 12 𝐾 ∈ ℂ
1817sqvali 14216 . . . . . . . . . . 11 (𝐾↑2) = (𝐾 · 𝐾)
1917mulridi 11263 . . . . . . . . . . . 12 (𝐾 · 1) = 𝐾
2019eqcomi 2744 . . . . . . . . . . 11 𝐾 = (𝐾 · 1)
2118, 20oveq12i 7443 . . . . . . . . . 10 ((𝐾↑2) − 𝐾) = ((𝐾 · 𝐾) − (𝐾 · 1))
22 ax-1cn 11211 . . . . . . . . . . 11 1 ∈ ℂ
2317, 17, 22subdii 11710 . . . . . . . . . 10 (𝐾 · (𝐾 − 1)) = ((𝐾 · 𝐾) − (𝐾 · 1))
2421, 23eqtr4i 2766 . . . . . . . . 9 ((𝐾↑2) − 𝐾) = (𝐾 · (𝐾 − 1))
2524oveq1i 7441 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) = ((𝐾 · (𝐾 − 1)) / 2)
2617, 22subcli 11583 . . . . . . . . 9 (𝐾 − 1) ∈ ℂ
27 2cn 12339 . . . . . . . . 9 2 ∈ ℂ
28 2ne0 12368 . . . . . . . . 9 2 ≠ 0
2917, 26, 27, 28divassi 12021 . . . . . . . 8 ((𝐾 · (𝐾 − 1)) / 2) = (𝐾 · ((𝐾 − 1) / 2))
30 1nn0 12540 . . . . . . . . 9 1 ∈ ℕ0
312, 2deccl 12746 . . . . . . . . . . . . 13 22 ∈ ℕ0
3231nn0cni 12536 . . . . . . . . . . . 12 22 ∈ ℂ
33 2p1e3 12406 . . . . . . . . . . . . . 14 (2 + 1) = 3
34 eqid 2735 . . . . . . . . . . . . . 14 22 = 22
352, 2, 33, 34decsuc 12762 . . . . . . . . . . . . 13 (22 + 1) = 23
361, 35eqtr4i 2766 . . . . . . . . . . . 12 𝐾 = (22 + 1)
3732, 22, 36mvrraddi 11523 . . . . . . . . . . 11 (𝐾 − 1) = 22
3837oveq1i 7441 . . . . . . . . . 10 ((𝐾 − 1) / 2) = (22 / 2)
39211multnc 12799 . . . . . . . . . . 11 (2 · 11) = 22
4030, 30deccl 12746 . . . . . . . . . . . . 13 11 ∈ ℕ0
4140nn0cni 12536 . . . . . . . . . . . 12 11 ∈ ℂ
4232, 27, 41, 28divmuli 12019 . . . . . . . . . . 11 ((22 / 2) = 11 ↔ (2 · 11) = 22)
4339, 42mpbir 231 . . . . . . . . . 10 (22 / 2) = 11
4438, 43eqtri 2763 . . . . . . . . 9 ((𝐾 − 1) / 2) = 11
4519, 1eqtri 2763 . . . . . . . . . 10 (𝐾 · 1) = 23
46 3p2e5 12415 . . . . . . . . . 10 (3 + 2) = 5
472, 3, 2, 45, 46decaddi 12791 . . . . . . . . 9 ((𝐾 · 1) + 2) = 25
485, 30, 30, 44, 3, 2, 47, 45decmul2c 12797 . . . . . . . 8 (𝐾 · ((𝐾 − 1) / 2)) = 253
4925, 29, 483eqtri 2767 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) = 253
5049, 6oveq12i 7443 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) = (253 / 365)
5116, 50breqtrri 5175 . . . . 5 (log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁)
52 2rp 13037 . . . . . . 7 2 ∈ ℝ+
53 relogcl 26632 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5452, 53ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
55 5nn0 12544 . . . . . . . . . . 11 5 ∈ ℕ0
562, 55deccl 12746 . . . . . . . . . 10 25 ∈ ℕ0
5756, 3deccl 12746 . . . . . . . . 9 253 ∈ ℕ0
5849, 57eqeltri 2835 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) ∈ ℕ0
5958nn0rei 12535 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) ∈ ℝ
60 nndivre 12305 . . . . . . 7 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
6159, 11, 60mp2an 692 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6254, 61ltnegi 11805 . . . . 5 ((log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2))
6351, 62mpbi 230 . . . 4 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2)
6461renegcli 11568 . . . . 5 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6554renegcli 11568 . . . . 5 -(log‘2) ∈ ℝ
66 eflt 16150 . . . . 5 ((-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ ∧ -(log‘2) ∈ ℝ) → (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))))
6764, 65, 66mp2an 692 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2)))
6863, 67mpbi 230 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))
6954recni 11273 . . . . 5 (log‘2) ∈ ℂ
70 efneg 16131 . . . . 5 ((log‘2) ∈ ℂ → (exp‘-(log‘2)) = (1 / (exp‘(log‘2))))
7169, 70ax-mp 5 . . . 4 (exp‘-(log‘2)) = (1 / (exp‘(log‘2)))
72 reeflog 26637 . . . . . 6 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
7352, 72ax-mp 5 . . . . 5 (exp‘(log‘2)) = 2
7473oveq2i 7442 . . . 4 (1 / (exp‘(log‘2))) = (1 / 2)
7571, 74eqtri 2763 . . 3 (exp‘-(log‘2)) = (1 / 2)
7668, 75breqtri 5173 . 2 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)
7712, 13birthdaylem1 27009 . . . . . . . 8 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
7877simp2i 1139 . . . . . . 7 𝑆 ∈ Fin
7977simp1i 1138 . . . . . . 7 𝑇𝑆
80 ssfi 9212 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑇𝑆) → 𝑇 ∈ Fin)
8178, 79, 80mp2an 692 . . . . . 6 𝑇 ∈ Fin
82 hashcl 14392 . . . . . 6 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
8381, 82ax-mp 5 . . . . 5 (♯‘𝑇) ∈ ℕ0
8483nn0rei 12535 . . . 4 (♯‘𝑇) ∈ ℝ
8577simp3i 1140 . . . . . 6 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
8611, 85ax-mp 5 . . . . 5 𝑆 ≠ ∅
87 hashnncl 14402 . . . . . 6 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
8878, 87ax-mp 5 . . . . 5 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
8986, 88mpbir 231 . . . 4 (♯‘𝑆) ∈ ℕ
90 nndivre 12305 . . . 4 (((♯‘𝑇) ∈ ℝ ∧ (♯‘𝑆) ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ)
9184, 89, 90mp2an 692 . . 3 ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ
92 reefcl 16120 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ)
9364, 92ax-mp 5 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ
94 halfre 12478 . . 3 (1 / 2) ∈ ℝ
9591, 93, 94lelttri 11386 . 2 ((((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∧ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)) → ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2))
9615, 76, 95mp2an 692 1 ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wss 3963  c0 4339   class class class wbr 5148  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  5c5 12322  6c6 12323  0cn0 12524  cdc 12731  +crp 13032  ...cfz 13544  cexp 14099  chash 14366  expce 16094  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-dvds 16288  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-ulm 26435  df-log 26613  df-atan 26925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator