MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthday Structured version   Visualization version   GIF version

Theorem birthday 26871
Description: The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
birthday.k 𝐾 = 23
birthday.n 𝑁 = 365
Assertion
Ref Expression
birthday ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthday
StepHypRef Expression
1 birthday.k . . . 4 𝐾 = 23
2 2nn0 12466 . . . . 5 2 ∈ ℕ0
3 3nn0 12467 . . . . 5 3 ∈ ℕ0
42, 3deccl 12671 . . . 4 23 ∈ ℕ0
51, 4eqeltri 2825 . . 3 𝐾 ∈ ℕ0
6 birthday.n . . . 4 𝑁 = 365
7 6nn0 12470 . . . . . 6 6 ∈ ℕ0
83, 7deccl 12671 . . . . 5 36 ∈ ℕ0
9 5nn 12279 . . . . 5 5 ∈ ℕ
108, 9decnncl 12676 . . . 4 365 ∈ ℕ
116, 10eqeltri 2825 . . 3 𝑁 ∈ ℕ
12 birthday.s . . . 4 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
13 birthday.t . . . 4 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
1412, 13birthdaylem3 26870 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
155, 11, 14mp2an 692 . 2 ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))
16 log2ub 26866 . . . . . 6 (log‘2) < (253 / 365)
175nn0cni 12461 . . . . . . . . . . . 12 𝐾 ∈ ℂ
1817sqvali 14152 . . . . . . . . . . 11 (𝐾↑2) = (𝐾 · 𝐾)
1917mulridi 11185 . . . . . . . . . . . 12 (𝐾 · 1) = 𝐾
2019eqcomi 2739 . . . . . . . . . . 11 𝐾 = (𝐾 · 1)
2118, 20oveq12i 7402 . . . . . . . . . 10 ((𝐾↑2) − 𝐾) = ((𝐾 · 𝐾) − (𝐾 · 1))
22 ax-1cn 11133 . . . . . . . . . . 11 1 ∈ ℂ
2317, 17, 22subdii 11634 . . . . . . . . . 10 (𝐾 · (𝐾 − 1)) = ((𝐾 · 𝐾) − (𝐾 · 1))
2421, 23eqtr4i 2756 . . . . . . . . 9 ((𝐾↑2) − 𝐾) = (𝐾 · (𝐾 − 1))
2524oveq1i 7400 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) = ((𝐾 · (𝐾 − 1)) / 2)
2617, 22subcli 11505 . . . . . . . . 9 (𝐾 − 1) ∈ ℂ
27 2cn 12268 . . . . . . . . 9 2 ∈ ℂ
28 2ne0 12297 . . . . . . . . 9 2 ≠ 0
2917, 26, 27, 28divassi 11945 . . . . . . . 8 ((𝐾 · (𝐾 − 1)) / 2) = (𝐾 · ((𝐾 − 1) / 2))
30 1nn0 12465 . . . . . . . . 9 1 ∈ ℕ0
312, 2deccl 12671 . . . . . . . . . . . . 13 22 ∈ ℕ0
3231nn0cni 12461 . . . . . . . . . . . 12 22 ∈ ℂ
33 2p1e3 12330 . . . . . . . . . . . . . 14 (2 + 1) = 3
34 eqid 2730 . . . . . . . . . . . . . 14 22 = 22
352, 2, 33, 34decsuc 12687 . . . . . . . . . . . . 13 (22 + 1) = 23
361, 35eqtr4i 2756 . . . . . . . . . . . 12 𝐾 = (22 + 1)
3732, 22, 36mvrraddi 11445 . . . . . . . . . . 11 (𝐾 − 1) = 22
3837oveq1i 7400 . . . . . . . . . 10 ((𝐾 − 1) / 2) = (22 / 2)
39211multnc 12724 . . . . . . . . . . 11 (2 · 11) = 22
4030, 30deccl 12671 . . . . . . . . . . . . 13 11 ∈ ℕ0
4140nn0cni 12461 . . . . . . . . . . . 12 11 ∈ ℂ
4232, 27, 41, 28divmuli 11943 . . . . . . . . . . 11 ((22 / 2) = 11 ↔ (2 · 11) = 22)
4339, 42mpbir 231 . . . . . . . . . 10 (22 / 2) = 11
4438, 43eqtri 2753 . . . . . . . . 9 ((𝐾 − 1) / 2) = 11
4519, 1eqtri 2753 . . . . . . . . . 10 (𝐾 · 1) = 23
46 3p2e5 12339 . . . . . . . . . 10 (3 + 2) = 5
472, 3, 2, 45, 46decaddi 12716 . . . . . . . . 9 ((𝐾 · 1) + 2) = 25
485, 30, 30, 44, 3, 2, 47, 45decmul2c 12722 . . . . . . . 8 (𝐾 · ((𝐾 − 1) / 2)) = 253
4925, 29, 483eqtri 2757 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) = 253
5049, 6oveq12i 7402 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) = (253 / 365)
5116, 50breqtrri 5137 . . . . 5 (log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁)
52 2rp 12963 . . . . . . 7 2 ∈ ℝ+
53 relogcl 26491 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5452, 53ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
55 5nn0 12469 . . . . . . . . . . 11 5 ∈ ℕ0
562, 55deccl 12671 . . . . . . . . . 10 25 ∈ ℕ0
5756, 3deccl 12671 . . . . . . . . 9 253 ∈ ℕ0
5849, 57eqeltri 2825 . . . . . . . 8 (((𝐾↑2) − 𝐾) / 2) ∈ ℕ0
5958nn0rei 12460 . . . . . . 7 (((𝐾↑2) − 𝐾) / 2) ∈ ℝ
60 nndivre 12234 . . . . . . 7 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
6159, 11, 60mp2an 692 . . . . . 6 ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6254, 61ltnegi 11729 . . . . 5 ((log‘2) < ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2))
6351, 62mpbi 230 . . . 4 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2)
6461renegcli 11490 . . . . 5 -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ
6554renegcli 11490 . . . . 5 -(log‘2) ∈ ℝ
66 eflt 16092 . . . . 5 ((-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ ∧ -(log‘2) ∈ ℝ) → (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))))
6764, 65, 66mp2an 692 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) < -(log‘2) ↔ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2)))
6863, 67mpbi 230 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (exp‘-(log‘2))
6954recni 11195 . . . . 5 (log‘2) ∈ ℂ
70 efneg 16073 . . . . 5 ((log‘2) ∈ ℂ → (exp‘-(log‘2)) = (1 / (exp‘(log‘2))))
7169, 70ax-mp 5 . . . 4 (exp‘-(log‘2)) = (1 / (exp‘(log‘2)))
72 reeflog 26496 . . . . . 6 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
7352, 72ax-mp 5 . . . . 5 (exp‘(log‘2)) = 2
7473oveq2i 7401 . . . 4 (1 / (exp‘(log‘2))) = (1 / 2)
7571, 74eqtri 2753 . . 3 (exp‘-(log‘2)) = (1 / 2)
7668, 75breqtri 5135 . 2 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)
7712, 13birthdaylem1 26868 . . . . . . . 8 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
7877simp2i 1140 . . . . . . 7 𝑆 ∈ Fin
7977simp1i 1139 . . . . . . 7 𝑇𝑆
80 ssfi 9143 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑇𝑆) → 𝑇 ∈ Fin)
8178, 79, 80mp2an 692 . . . . . 6 𝑇 ∈ Fin
82 hashcl 14328 . . . . . 6 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
8381, 82ax-mp 5 . . . . 5 (♯‘𝑇) ∈ ℕ0
8483nn0rei 12460 . . . 4 (♯‘𝑇) ∈ ℝ
8577simp3i 1141 . . . . . 6 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
8611, 85ax-mp 5 . . . . 5 𝑆 ≠ ∅
87 hashnncl 14338 . . . . . 6 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
8878, 87ax-mp 5 . . . . 5 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
8986, 88mpbir 231 . . . 4 (♯‘𝑆) ∈ ℕ
90 nndivre 12234 . . . 4 (((♯‘𝑇) ∈ ℝ ∧ (♯‘𝑆) ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ)
9184, 89, 90mp2an 692 . . 3 ((♯‘𝑇) / (♯‘𝑆)) ∈ ℝ
92 reefcl 16060 . . . 4 (-((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ)
9364, 92ax-mp 5 . . 3 (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ
94 halfre 12402 . . 3 (1 / 2) ∈ ℝ
9591, 93, 94lelttri 11308 . 2 ((((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∧ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) < (1 / 2)) → ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2))
9615, 76, 95mp2an 692 1 ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wss 3917  c0 4299   class class class wbr 5110  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  5c5 12251  6c6 12252  0cn0 12449  cdc 12656  +crp 12958  ...cfz 13475  cexp 14033  chash 14302  expce 16034  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-ulm 26293  df-log 26472  df-atan 26784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator