| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: caovmo 7583 curry1 8034 fsuppunfi 9272 oiid 9427 cantnflt 9562 oemapvali 9574 cnfcom2lem 9591 cfeq0 10144 recmulnq 10852 addgt0sr 10992 mappsrpr 10996 isercolllem2 15570 dvdsaddre2b 16215 ndvdssub 16317 lcmfunsn 16552 imasvscafn 17438 subcidcl 17748 funcoppc 17779 clatleglb 18421 sgrpidmnd 18644 conjsubgen 19161 gagrpid 19204 gaass 19207 cntzssv 19238 cntzi 19239 efgredlemf 19651 abveq0 20731 abvmul 20734 abvtri 20735 cnpimaex 23169 restnlly 23395 fclsopni 23928 xmeteq0 24251 xmettri2 24253 metcnpi 24457 metcnpi2 24458 causs 25223 dvbssntr 25826 dgrlem 26159 dgrlb 26166 precsexlem11 28153 umgredgne 29121 nbgrcl 29311 wlkdlem3 29659 usgr2trlncrct 29782 wwlksonvtx 29831 wwlksnextproplem3 29887 erclwwlknsym 30045 erclwwlkntr 30046 1pthon2v 30128 cycpmco2lem3 33092 idomsubr 33270 elrspunidl 33388 sseqf 34400 subgrwlk 35164 acycgrsubgr 35190 fvineqsneu 37444 pr2el2 43583 rfovcnvf1od 44036 gneispaceel 44175 gneispacess 44177 clnbgrcl 47851 linindslinci 48479 2arymaptfv 48682 f1sn2g 48881 oppf1st2nd 49162 2oppf 49163 |
| Copyright terms: Public domain | W3C validator |