![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: caovmo 7648 curry1 8094 fsuppunfi 9387 oiid 9540 cantnflt 9671 oemapvali 9683 cnfcom2lem 9700 cfeq0 10255 recmulnq 10963 addgt0sr 11103 mappsrpr 11107 isercolllem2 15617 dvdsaddre2b 16255 ndvdssub 16357 lcmfunsn 16586 imasvscafn 17488 subcidcl 17799 funcoppc 17830 clatleglb 18476 sgrpidmnd 18665 conjsubgen 19166 gagrpid 19200 gaass 19203 cntzssv 19234 cntzi 19235 efgredlemf 19651 abveq0 20578 abvmul 20581 abvtri 20582 cnpimaex 22981 restnlly 23207 fclsopni 23740 xmeteq0 24065 xmettri2 24067 metcnpi 24274 metcnpi2 24275 causs 25047 dvbssntr 25650 dgrlem 25979 dgrlb 25986 precsexlem11 27903 umgredgne 28673 nbgrcl 28860 wlkdlem3 29209 usgr2trlncrct 29328 wwlksonvtx 29377 wwlksnextproplem3 29433 erclwwlknsym 29591 erclwwlkntr 29592 1pthon2v 29674 cycpmco2lem3 32558 elrspunidl 32821 sseqf 33690 subgrwlk 34422 acycgrsubgr 34448 pr2el2 42605 rfovcnvf1od 43058 gneispaceel 43197 gneispacess 43199 linindslinci 47217 2arymaptfv 47425 f1sn2g 47605 |
Copyright terms: Public domain | W3C validator |