![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 491 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: caovmo 7148 curry1 7550 fsuppunfi 8583 oiid 8735 cantnflt 8866 oemapvali 8878 cnfcom2lem 8895 cfeq0 9413 recmulnq 10121 addgt0sr 10261 mappsrpr 10265 isercolllem2 14804 dvdsaddre2b 15436 ndvdssub 15539 lcmfunsn 15763 imasvscafn 16583 subcidcl 16889 funcoppc 16920 clatleglb 17512 conjsubgen 18077 gagrpid 18110 gaass 18113 cntzssv 18144 cntzi 18145 efgredlemf 18539 cnpimaex 21468 nbgrcl 26682 usgr2trlncrct 27155 wwlksonvtx 27204 wwlksnextproplem3 27287 wwlksnextproplem3OLD 27288 erclwwlknsym 27468 erclwwlkntr 27469 sseqf 31053 rfovcnvf1od 39258 gneispaceel 39401 gneispacess 39403 |
Copyright terms: Public domain | W3C validator |