![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: caovmo 7652 curry1 8103 fsuppunfi 9403 oiid 9556 cantnflt 9687 oemapvali 9699 cnfcom2lem 9716 cfeq0 10271 recmulnq 10979 addgt0sr 11119 mappsrpr 11123 isercolllem2 15636 dvdsaddre2b 16275 ndvdssub 16377 lcmfunsn 16606 imasvscafn 17510 subcidcl 17821 funcoppc 17852 clatleglb 18501 sgrpidmnd 18690 conjsubgen 19196 gagrpid 19236 gaass 19239 cntzssv 19270 cntzi 19271 efgredlemf 19687 abveq0 20695 abvmul 20698 abvtri 20699 cnpimaex 23147 restnlly 23373 fclsopni 23906 xmeteq0 24231 xmettri2 24233 metcnpi 24440 metcnpi2 24441 causs 25213 dvbssntr 25816 dgrlem 26150 dgrlb 26157 precsexlem11 28102 umgredgne 28945 nbgrcl 29135 wlkdlem3 29485 usgr2trlncrct 29604 wwlksonvtx 29653 wwlksnextproplem3 29709 erclwwlknsym 29867 erclwwlkntr 29868 1pthon2v 29950 cycpmco2lem3 32827 elrspunidl 33079 sseqf 33948 subgrwlk 34678 acycgrsubgr 34704 pr2el2 42904 rfovcnvf1od 43357 gneispaceel 43496 gneispacess 43498 linindslinci 47439 2arymaptfv 47647 f1sn2g 47826 |
Copyright terms: Public domain | W3C validator |