| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: caovmo 7590 curry1 8044 fsuppunfi 9297 oiid 9452 cantnflt 9587 oemapvali 9599 cnfcom2lem 9616 cfeq0 10169 recmulnq 10877 addgt0sr 11017 mappsrpr 11021 isercolllem2 15591 dvdsaddre2b 16236 ndvdssub 16338 lcmfunsn 16573 imasvscafn 17459 subcidcl 17769 funcoppc 17800 clatleglb 18442 sgrpidmnd 18631 conjsubgen 19148 gagrpid 19191 gaass 19194 cntzssv 19225 cntzi 19226 efgredlemf 19638 abveq0 20721 abvmul 20724 abvtri 20725 cnpimaex 23159 restnlly 23385 fclsopni 23918 xmeteq0 24242 xmettri2 24244 metcnpi 24448 metcnpi2 24449 causs 25214 dvbssntr 25817 dgrlem 26150 dgrlb 26157 precsexlem11 28142 umgredgne 29108 nbgrcl 29298 wlkdlem3 29646 usgr2trlncrct 29769 wwlksonvtx 29818 wwlksnextproplem3 29874 erclwwlknsym 30032 erclwwlkntr 30033 1pthon2v 30115 cycpmco2lem3 33083 idomsubr 33258 elrspunidl 33375 sseqf 34359 subgrwlk 35104 acycgrsubgr 35130 fvineqsneu 37384 pr2el2 43524 rfovcnvf1od 43977 gneispaceel 44116 gneispacess 44118 clnbgrcl 47806 linindslinci 48434 2arymaptfv 48637 f1sn2g 48836 oppf1st2nd 49117 2oppf 49118 |
| Copyright terms: Public domain | W3C validator |