![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 494 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: caovmo 7656 curry1 8107 fsuppunfi 9411 oiid 9564 cantnflt 9695 oemapvali 9707 cnfcom2lem 9724 cfeq0 10279 recmulnq 10987 addgt0sr 11127 mappsrpr 11131 isercolllem2 15644 dvdsaddre2b 16283 ndvdssub 16385 lcmfunsn 16614 imasvscafn 17518 subcidcl 17829 funcoppc 17860 clatleglb 18509 sgrpidmnd 18698 conjsubgen 19209 gagrpid 19249 gaass 19252 cntzssv 19283 cntzi 19284 efgredlemf 19700 abveq0 20710 abvmul 20713 abvtri 20714 cnpimaex 23190 restnlly 23416 fclsopni 23949 xmeteq0 24274 xmettri2 24276 metcnpi 24483 metcnpi2 24484 causs 25256 dvbssntr 25859 dgrlem 26193 dgrlb 26200 precsexlem11 28149 umgredgne 29014 nbgrcl 29204 wlkdlem3 29554 usgr2trlncrct 29673 wwlksonvtx 29722 wwlksnextproplem3 29778 erclwwlknsym 29936 erclwwlkntr 29937 1pthon2v 30019 cycpmco2lem3 32906 idomsubr 33056 elrspunidl 33206 sseqf 34082 subgrwlk 34812 acycgrsubgr 34838 pr2el2 43046 rfovcnvf1od 43499 gneispaceel 43638 gneispacess 43640 clnbgrcl 47224 linindslinci 47628 2arymaptfv 47836 f1sn2g 48015 |
Copyright terms: Public domain | W3C validator |