![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: caovmo 7670 curry1 8128 fsuppunfi 9426 oiid 9579 cantnflt 9710 oemapvali 9722 cnfcom2lem 9739 cfeq0 10294 recmulnq 11002 addgt0sr 11142 mappsrpr 11146 isercolllem2 15699 dvdsaddre2b 16341 ndvdssub 16443 lcmfunsn 16678 imasvscafn 17584 subcidcl 17895 funcoppc 17926 clatleglb 18576 sgrpidmnd 18765 conjsubgen 19282 gagrpid 19325 gaass 19328 cntzssv 19359 cntzi 19360 efgredlemf 19774 abveq0 20836 abvmul 20839 abvtri 20840 cnpimaex 23280 restnlly 23506 fclsopni 24039 xmeteq0 24364 xmettri2 24366 metcnpi 24573 metcnpi2 24574 causs 25346 dvbssntr 25950 dgrlem 26283 dgrlb 26290 precsexlem11 28256 umgredgne 29177 nbgrcl 29367 wlkdlem3 29717 usgr2trlncrct 29836 wwlksonvtx 29885 wwlksnextproplem3 29941 erclwwlknsym 30099 erclwwlkntr 30100 1pthon2v 30182 cycpmco2lem3 33131 idomsubr 33291 elrspunidl 33436 sseqf 34374 subgrwlk 35117 acycgrsubgr 35143 fvineqsneu 37394 pr2el2 43541 rfovcnvf1od 43994 gneispaceel 44133 gneispacess 44135 clnbgrcl 47746 linindslinci 48294 2arymaptfv 48501 f1sn2g 48681 |
Copyright terms: Public domain | W3C validator |