| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: caovmo 7589 curry1 8040 fsuppunfi 9279 oiid 9434 cantnflt 9569 oemapvali 9581 cnfcom2lem 9598 cfeq0 10154 recmulnq 10862 addgt0sr 11002 mappsrpr 11006 isercolllem2 15575 dvdsaddre2b 16220 ndvdssub 16322 lcmfunsn 16557 imasvscafn 17443 subcidcl 17753 funcoppc 17784 clatleglb 18426 sgrpidmnd 18649 conjsubgen 19165 gagrpid 19208 gaass 19211 cntzssv 19242 cntzi 19243 efgredlemf 19655 abveq0 20735 abvmul 20738 abvtri 20739 cnpimaex 23172 restnlly 23398 fclsopni 23931 xmeteq0 24254 xmettri2 24256 metcnpi 24460 metcnpi2 24461 causs 25226 dvbssntr 25829 dgrlem 26162 dgrlb 26169 precsexlem11 28156 umgredgne 29125 nbgrcl 29315 wlkdlem3 29663 usgr2trlncrct 29786 wwlksonvtx 29835 wwlksnextproplem3 29891 erclwwlknsym 30052 erclwwlkntr 30053 1pthon2v 30135 cycpmco2lem3 33104 idomsubr 33282 elrspunidl 33400 sseqf 34426 subgrwlk 35197 acycgrsubgr 35223 fvineqsneu 37476 pr2el2 43668 rfovcnvf1od 44121 gneispaceel 44260 gneispacess 44262 clnbgrcl 47945 linindslinci 48573 2arymaptfv 48776 f1sn2g 48975 oppf1st2nd 49256 2oppf 49257 |
| Copyright terms: Public domain | W3C validator |