| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: caovmo 7629 curry1 8086 fsuppunfi 9346 oiid 9501 cantnflt 9632 oemapvali 9644 cnfcom2lem 9661 cfeq0 10216 recmulnq 10924 addgt0sr 11064 mappsrpr 11068 isercolllem2 15639 dvdsaddre2b 16284 ndvdssub 16386 lcmfunsn 16621 imasvscafn 17507 subcidcl 17813 funcoppc 17844 clatleglb 18484 sgrpidmnd 18673 conjsubgen 19190 gagrpid 19233 gaass 19236 cntzssv 19267 cntzi 19268 efgredlemf 19678 abveq0 20734 abvmul 20737 abvtri 20738 cnpimaex 23150 restnlly 23376 fclsopni 23909 xmeteq0 24233 xmettri2 24235 metcnpi 24439 metcnpi2 24440 causs 25205 dvbssntr 25808 dgrlem 26141 dgrlb 26148 precsexlem11 28126 umgredgne 29079 nbgrcl 29269 wlkdlem3 29619 usgr2trlncrct 29743 wwlksonvtx 29792 wwlksnextproplem3 29848 erclwwlknsym 30006 erclwwlkntr 30007 1pthon2v 30089 cycpmco2lem3 33092 idomsubr 33266 elrspunidl 33406 sseqf 34390 subgrwlk 35126 acycgrsubgr 35152 fvineqsneu 37406 pr2el2 43547 rfovcnvf1od 44000 gneispaceel 44139 gneispacess 44141 clnbgrcl 47826 linindslinci 48441 2arymaptfv 48644 f1sn2g 48843 oppf1st2nd 49124 2oppf 49125 |
| Copyright terms: Public domain | W3C validator |