Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 496 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: caovmo 7509 curry1 7944 fsuppunfi 9148 oiid 9300 cantnflt 9430 oemapvali 9442 cnfcom2lem 9459 cfeq0 10012 recmulnq 10720 addgt0sr 10860 mappsrpr 10864 isercolllem2 15377 dvdsaddre2b 16016 ndvdssub 16118 lcmfunsn 16349 imasvscafn 17248 subcidcl 17559 funcoppc 17590 clatleglb 18236 sgrpidmnd 18390 conjsubgen 18867 gagrpid 18900 gaass 18903 cntzssv 18934 cntzi 18935 efgredlemf 19347 abveq0 20086 abvmul 20089 abvtri 20090 cnpimaex 22407 restnlly 22633 fclsopni 23166 xmeteq0 23491 xmettri2 23493 metcnpi 23700 metcnpi2 23701 causs 24462 dvbssntr 25064 dgrlem 25390 dgrlb 25397 umgredgne 27515 nbgrcl 27702 wlkdlem3 28052 usgr2trlncrct 28171 wwlksonvtx 28220 wwlksnextproplem3 28276 erclwwlknsym 28434 erclwwlkntr 28435 1pthon2v 28517 cycpmco2lem3 31395 elrspunidl 31606 sseqf 32359 subgrwlk 33094 acycgrsubgr 33120 pr2el2 41158 rfovcnvf1od 41612 gneispaceel 41753 gneispacess 41755 linindslinci 45789 2arymaptfv 45997 f1sn2g 46178 |
Copyright terms: Public domain | W3C validator |