![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 496 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: caovmo 7646 curry1 8092 fsuppunfi 9385 oiid 9538 cantnflt 9669 oemapvali 9681 cnfcom2lem 9698 cfeq0 10253 recmulnq 10961 addgt0sr 11101 mappsrpr 11105 isercolllem2 15614 dvdsaddre2b 16252 ndvdssub 16354 lcmfunsn 16583 imasvscafn 17485 subcidcl 17796 funcoppc 17827 clatleglb 18473 sgrpidmnd 18632 conjsubgen 19127 gagrpid 19160 gaass 19163 cntzssv 19194 cntzi 19195 efgredlemf 19611 abveq0 20438 abvmul 20441 abvtri 20442 cnpimaex 22767 restnlly 22993 fclsopni 23526 xmeteq0 23851 xmettri2 23853 metcnpi 24060 metcnpi2 24061 causs 24822 dvbssntr 25424 dgrlem 25750 dgrlb 25757 precsexlem11 27673 umgredgne 28443 nbgrcl 28630 wlkdlem3 28979 usgr2trlncrct 29098 wwlksonvtx 29147 wwlksnextproplem3 29203 erclwwlknsym 29361 erclwwlkntr 29362 1pthon2v 29444 cycpmco2lem3 32328 elrspunidl 32591 sseqf 33460 subgrwlk 34192 acycgrsubgr 34218 pr2el2 42384 rfovcnvf1od 42837 gneispaceel 42976 gneispacess 42978 linindslinci 47207 2arymaptfv 47415 f1sn2g 47595 |
Copyright terms: Public domain | W3C validator |