| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: caovmo 7644 curry1 8103 fsuppunfi 9400 oiid 9555 cantnflt 9686 oemapvali 9698 cnfcom2lem 9715 cfeq0 10270 recmulnq 10978 addgt0sr 11118 mappsrpr 11122 isercolllem2 15682 dvdsaddre2b 16326 ndvdssub 16428 lcmfunsn 16663 imasvscafn 17551 subcidcl 17857 funcoppc 17888 clatleglb 18528 sgrpidmnd 18717 conjsubgen 19234 gagrpid 19277 gaass 19280 cntzssv 19311 cntzi 19312 efgredlemf 19722 abveq0 20778 abvmul 20781 abvtri 20782 cnpimaex 23194 restnlly 23420 fclsopni 23953 xmeteq0 24277 xmettri2 24279 metcnpi 24483 metcnpi2 24484 causs 25250 dvbssntr 25853 dgrlem 26186 dgrlb 26193 precsexlem11 28171 umgredgne 29124 nbgrcl 29314 wlkdlem3 29664 usgr2trlncrct 29788 wwlksonvtx 29837 wwlksnextproplem3 29893 erclwwlknsym 30051 erclwwlkntr 30052 1pthon2v 30134 cycpmco2lem3 33139 idomsubr 33303 elrspunidl 33443 sseqf 34424 subgrwlk 35154 acycgrsubgr 35180 fvineqsneu 37429 pr2el2 43575 rfovcnvf1od 44028 gneispaceel 44167 gneispacess 44169 clnbgrcl 47835 linindslinci 48424 2arymaptfv 48631 f1sn2g 48829 oppf1st2nd 49079 2oppf 49080 |
| Copyright terms: Public domain | W3C validator |