![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: caovmo 7687 curry1 8145 fsuppunfi 9457 oiid 9610 cantnflt 9741 oemapvali 9753 cnfcom2lem 9770 cfeq0 10325 recmulnq 11033 addgt0sr 11173 mappsrpr 11177 isercolllem2 15714 dvdsaddre2b 16355 ndvdssub 16457 lcmfunsn 16691 imasvscafn 17597 subcidcl 17908 funcoppc 17939 clatleglb 18588 sgrpidmnd 18777 conjsubgen 19291 gagrpid 19334 gaass 19337 cntzssv 19368 cntzi 19369 efgredlemf 19783 abveq0 20841 abvmul 20844 abvtri 20845 cnpimaex 23285 restnlly 23511 fclsopni 24044 xmeteq0 24369 xmettri2 24371 metcnpi 24578 metcnpi2 24579 causs 25351 dvbssntr 25955 dgrlem 26288 dgrlb 26295 precsexlem11 28259 umgredgne 29180 nbgrcl 29370 wlkdlem3 29720 usgr2trlncrct 29839 wwlksonvtx 29888 wwlksnextproplem3 29944 erclwwlknsym 30102 erclwwlkntr 30103 1pthon2v 30185 cycpmco2lem3 33121 idomsubr 33276 elrspunidl 33421 sseqf 34357 subgrwlk 35100 acycgrsubgr 35126 fvineqsneu 37377 pr2el2 43513 rfovcnvf1od 43966 gneispaceel 44105 gneispacess 44107 clnbgrcl 47695 linindslinci 48177 2arymaptfv 48385 f1sn2g 48564 |
Copyright terms: Public domain | W3C validator |