| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: caovmo 7626 curry1 8083 fsuppunfi 9339 oiid 9494 cantnflt 9625 oemapvali 9637 cnfcom2lem 9654 cfeq0 10209 recmulnq 10917 addgt0sr 11057 mappsrpr 11061 isercolllem2 15632 dvdsaddre2b 16277 ndvdssub 16379 lcmfunsn 16614 imasvscafn 17500 subcidcl 17806 funcoppc 17837 clatleglb 18477 sgrpidmnd 18666 conjsubgen 19183 gagrpid 19226 gaass 19229 cntzssv 19260 cntzi 19261 efgredlemf 19671 abveq0 20727 abvmul 20730 abvtri 20731 cnpimaex 23143 restnlly 23369 fclsopni 23902 xmeteq0 24226 xmettri2 24228 metcnpi 24432 metcnpi2 24433 causs 25198 dvbssntr 25801 dgrlem 26134 dgrlb 26141 precsexlem11 28119 umgredgne 29072 nbgrcl 29262 wlkdlem3 29612 usgr2trlncrct 29736 wwlksonvtx 29785 wwlksnextproplem3 29841 erclwwlknsym 29999 erclwwlkntr 30000 1pthon2v 30082 cycpmco2lem3 33085 idomsubr 33259 elrspunidl 33399 sseqf 34383 subgrwlk 35119 acycgrsubgr 35145 fvineqsneu 37399 pr2el2 43540 rfovcnvf1od 43993 gneispaceel 44132 gneispacess 44134 clnbgrcl 47822 linindslinci 48437 2arymaptfv 48640 f1sn2g 48839 oppf1st2nd 49120 2oppf 49121 |
| Copyright terms: Public domain | W3C validator |