Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version |
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) (Proof shortened by Wolf Lammen, 26-Mar-2022.) |
Ref | Expression |
---|---|
simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
simpl2im.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
simpl2im | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → 𝜒) |
3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: caovmo 7487 curry1 7915 fsuppunfi 9078 oiid 9230 cantnflt 9360 oemapvali 9372 cnfcom2lem 9389 cfeq0 9943 recmulnq 10651 addgt0sr 10791 mappsrpr 10795 isercolllem2 15305 dvdsaddre2b 15944 ndvdssub 16046 lcmfunsn 16277 imasvscafn 17165 subcidcl 17475 funcoppc 17506 clatleglb 18151 sgrpidmnd 18305 conjsubgen 18782 gagrpid 18815 gaass 18818 cntzssv 18849 cntzi 18850 efgredlemf 19262 abveq0 20001 abvmul 20004 abvtri 20005 cnpimaex 22315 restnlly 22541 fclsopni 23074 xmeteq0 23399 xmettri2 23401 metcnpi 23606 metcnpi2 23607 causs 24367 dvbssntr 24969 dgrlem 25295 dgrlb 25302 umgredgne 27418 nbgrcl 27605 wlkdlem3 27954 usgr2trlncrct 28072 wwlksonvtx 28121 wwlksnextproplem3 28177 erclwwlknsym 28335 erclwwlkntr 28336 1pthon2v 28418 cycpmco2lem3 31297 elrspunidl 31508 sseqf 32259 subgrwlk 32994 acycgrsubgr 33020 pr2el2 41047 rfovcnvf1od 41501 gneispaceel 41642 gneispacess 41644 linindslinci 45677 2arymaptfv 45885 f1sn2g 46066 |
Copyright terms: Public domain | W3C validator |