MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprmn0modprm0 Structured version   Visualization version   GIF version

Theorem modprmn0modprm0 16536
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1189 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℙ)
2 prmnn 16407 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3 zmodfzo 13642 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
42, 3sylan2 592 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
54ancoms 458 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
653adant3 1130 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
7 fzo1fzo0n0 13466 . . . . . . . 8 ((𝑁 mod 𝑃) ∈ (1..^𝑃) ↔ ((𝑁 mod 𝑃) ∈ (0..^𝑃) ∧ (𝑁 mod 𝑃) ≠ 0))
87simplbi2com 502 . . . . . . 7 ((𝑁 mod 𝑃) ≠ 0 → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
983ad2ant3 1133 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
106, 9mpd 15 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
1110adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
12 simpr 484 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ (0..^𝑃))
13 nnnn0modprm0 16535 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 mod 𝑃) ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
141, 11, 12, 13syl3anc 1369 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
15 elfzoelz 13415 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℤ)
1615zcnd 12455 . . . . . . . . 9 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℂ)
172anim1ci 615 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ))
18 zmodcl 13639 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ ℕ0)
19 nn0cn 12271 . . . . . . . . . . . 12 ((𝑁 mod 𝑃) ∈ ℕ0 → (𝑁 mod 𝑃) ∈ ℂ)
2017, 18, 193syl 18 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ ℂ)
21203adant3 1130 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ ℂ)
2221adantr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ ℂ)
23 mulcom 10985 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (𝑁 mod 𝑃) ∈ ℂ) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2416, 22, 23syl2anr 596 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2524oveq2d 7311 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑗 · (𝑁 mod 𝑃))) = (𝐼 + ((𝑁 mod 𝑃) · 𝑗)))
2625oveq1d 7310 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃))
27 elfzoelz 13415 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℤ)
2827zred 12454 . . . . . . . . 9 (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℝ)
2928adantl 481 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ ℝ)
3029adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℝ)
31 zre 12351 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
32313ad2ant2 1132 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑁 ∈ ℝ)
3332adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑁 ∈ ℝ)
3433adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℝ)
3515adantl 481 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℤ)
362nnrpd 12798 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
37363ad2ant1 1131 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈ ℝ+)
3837adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℝ+)
3938adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℝ+)
40 modaddmulmod 13686 . . . . . . 7 (((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑗 ∈ ℤ) ∧ 𝑃 ∈ ℝ+) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
4130, 34, 35, 39, 40syl31anc 1371 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
42 zcn 12352 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4342adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℂ)
4416adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℂ)
4543, 44mulcomd 11024 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
4645ex 412 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
47463ad2ant2 1132 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
4847adantr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
4948imp 406 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
5049oveq2d 7311 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑁 · 𝑗)) = (𝐼 + (𝑗 · 𝑁)))
5150oveq1d 7310 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑁 · 𝑗)) mod 𝑃) = ((𝐼 + (𝑗 · 𝑁)) mod 𝑃))
5226, 41, 513eqtrrd 2778 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃))
5352eqeq1d 2735 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5453rexbidva 3167 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5514, 54mpbird 256 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
5655ex 412 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101  wne 2938  wrex 3068  (class class class)co 7295  cc 10897  cr 10898  0cc0 10899  1c1 10900   + caddc 10902   · cmul 10904  cn 12001  0cn0 12261  cz 12347  +crp 12758  ..^cfzo 13410   mod cmo 13617  cprime 16404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-2o 8318  df-oadd 8321  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-inf 9230  df-dju 9687  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-xnn0 12334  df-z 12348  df-uz 12611  df-rp 12759  df-fz 13268  df-fzo 13411  df-fl 13540  df-mod 13618  df-seq 13750  df-exp 13811  df-hash 14073  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-dvds 15992  df-gcd 16230  df-prm 16405  df-phi 16495
This theorem is referenced by:  cshwsidrepsw  16823
  Copyright terms: Public domain W3C validator