MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprmn0modprm0 Structured version   Visualization version   GIF version

Theorem modprmn0modprm0 16778
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℙ)
2 prmnn 16644 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3 zmodfzo 13856 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
42, 3sylan2 593 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
54ancoms 458 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
653adant3 1132 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (0..^𝑃))
7 fzo1fzo0n0 13676 . . . . . . . 8 ((𝑁 mod 𝑃) ∈ (1..^𝑃) ↔ ((𝑁 mod 𝑃) ∈ (0..^𝑃) ∧ (𝑁 mod 𝑃) ≠ 0))
87simplbi2com 502 . . . . . . 7 ((𝑁 mod 𝑃) ≠ 0 → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
983ad2ant3 1135 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → ((𝑁 mod 𝑃) ∈ (0..^𝑃) → (𝑁 mod 𝑃) ∈ (1..^𝑃)))
106, 9mpd 15 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
1110adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ (1..^𝑃))
12 simpr 484 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ (0..^𝑃))
13 nnnn0modprm0 16777 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 mod 𝑃) ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
141, 11, 12, 13syl3anc 1373 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0)
15 elfzoelz 13620 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℤ)
1615zcnd 12639 . . . . . . . . 9 (𝑗 ∈ (0..^𝑃) → 𝑗 ∈ ℂ)
172anim1ci 616 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ))
18 zmodcl 13853 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑁 mod 𝑃) ∈ ℕ0)
19 nn0cn 12452 . . . . . . . . . . . 12 ((𝑁 mod 𝑃) ∈ ℕ0 → (𝑁 mod 𝑃) ∈ ℂ)
2017, 18, 193syl 18 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑃) ∈ ℂ)
21203adant3 1132 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑁 mod 𝑃) ∈ ℂ)
2221adantr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑁 mod 𝑃) ∈ ℂ)
23 mulcom 11154 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (𝑁 mod 𝑃) ∈ ℂ) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2416, 22, 23syl2anr 597 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑗 · (𝑁 mod 𝑃)) = ((𝑁 mod 𝑃) · 𝑗))
2524oveq2d 7403 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑗 · (𝑁 mod 𝑃))) = (𝐼 + ((𝑁 mod 𝑃) · 𝑗)))
2625oveq1d 7402 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃))
27 elfzoelz 13620 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℤ)
2827zred 12638 . . . . . . . . 9 (𝐼 ∈ (0..^𝑃) → 𝐼 ∈ ℝ)
2928adantl 481 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝐼 ∈ ℝ)
3029adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝐼 ∈ ℝ)
31 zre 12533 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
32313ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑁 ∈ ℝ)
3332adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑁 ∈ ℝ)
3433adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℝ)
3515adantl 481 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℤ)
362nnrpd 12993 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
37363ad2ant1 1133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → 𝑃 ∈ ℝ+)
3837adantr 480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → 𝑃 ∈ ℝ+)
3938adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → 𝑃 ∈ ℝ+)
40 modaddmulmod 13903 . . . . . . 7 (((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑗 ∈ ℤ) ∧ 𝑃 ∈ ℝ+) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
4130, 34, 35, 39, 40syl31anc 1375 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + ((𝑁 mod 𝑃) · 𝑗)) mod 𝑃) = ((𝐼 + (𝑁 · 𝑗)) mod 𝑃))
42 zcn 12534 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
4342adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑁 ∈ ℂ)
4416adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → 𝑗 ∈ ℂ)
4543, 44mulcomd 11195 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
4645ex 412 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
47463ad2ant2 1134 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
4847adantr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (𝑗 ∈ (0..^𝑃) → (𝑁 · 𝑗) = (𝑗 · 𝑁)))
4948imp 406 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝑁 · 𝑗) = (𝑗 · 𝑁))
5049oveq2d 7403 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (𝐼 + (𝑁 · 𝑗)) = (𝐼 + (𝑗 · 𝑁)))
5150oveq1d 7402 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑁 · 𝑗)) mod 𝑃) = ((𝐼 + (𝑗 · 𝑁)) mod 𝑃))
5226, 41, 513eqtrrd 2769 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃))
5352eqeq1d 2731 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) ∧ 𝑗 ∈ (0..^𝑃)) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5453rexbidva 3155 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · (𝑁 mod 𝑃))) mod 𝑃) = 0))
5514, 54mpbird 257 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
5655ex 412 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cn 12186  0cn0 12442  cz 12529  +crp 12951  ..^cfzo 13615   mod cmo 13831  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736
This theorem is referenced by:  cshwsidrepsw  17064
  Copyright terms: Public domain W3C validator