Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovdistr Structured version   Visualization version   GIF version

Theorem ndmaovdistr 44586
Description: Any operation is distributive outside its domain. In contrast to ndmovdistr 7439 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmaov.6 dom 𝐺 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovdistr (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) )

Proof of Theorem ndmaovdistr
StepHypRef Expression
1 ndmaov.6 . . . . . 6 dom 𝐺 = (𝑆 × 𝑆)
21eleq2i 2830 . . . . 5 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐺 ↔ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ (𝑆 × 𝑆))
3 opelxp 5616 . . . . 5 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆))
42, 3bitri 274 . . . 4 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐺 ↔ (𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆))
5 aovvdm 44564 . . . . . 6 ( ((𝐵𝐹𝐶)) ∈ 𝑆 → ⟨𝐵, 𝐶⟩ ∈ dom 𝐹)
6 ndmaov.1 . . . . . . . . 9 dom 𝐹 = (𝑆 × 𝑆)
76eleq2i 2830 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑆))
8 opelxp 5616 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵𝑆𝐶𝑆))
97, 8bitri 274 . . . . . . 7 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 ↔ (𝐵𝑆𝐶𝑆))
10 3anass 1093 . . . . . . . 8 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
1110simplbi2com 502 . . . . . . 7 ((𝐵𝑆𝐶𝑆) → (𝐴𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
129, 11sylbi 216 . . . . . 6 (⟨𝐵, 𝐶⟩ ∈ dom 𝐹 → (𝐴𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
135, 12syl 17 . . . . 5 ( ((𝐵𝐹𝐶)) ∈ 𝑆 → (𝐴𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
1413impcom 407 . . . 4 ((𝐴𝑆 ∧ ((𝐵𝐹𝐶)) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
154, 14sylbi 216 . . 3 (⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐺 → (𝐴𝑆𝐵𝑆𝐶𝑆))
16 ndmaov 44562 . . 3 (¬ ⟨𝐴, ((𝐵𝐹𝐶)) ⟩ ∈ dom 𝐺 → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = V)
1715, 16nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = V)
186eleq2i 2830 . . . . 5 (⟨ ((𝐴𝐺𝐵)) , ((𝐴𝐺𝐶)) ⟩ ∈ dom 𝐹 ↔ ⟨ ((𝐴𝐺𝐵)) , ((𝐴𝐺𝐶)) ⟩ ∈ (𝑆 × 𝑆))
19 opelxp 5616 . . . . 5 (⟨ ((𝐴𝐺𝐵)) , ((𝐴𝐺𝐶)) ⟩ ∈ (𝑆 × 𝑆) ↔ ( ((𝐴𝐺𝐵)) ∈ 𝑆 ∧ ((𝐴𝐺𝐶)) ∈ 𝑆))
2018, 19bitri 274 . . . 4 (⟨ ((𝐴𝐺𝐵)) , ((𝐴𝐺𝐶)) ⟩ ∈ dom 𝐹 ↔ ( ((𝐴𝐺𝐵)) ∈ 𝑆 ∧ ((𝐴𝐺𝐶)) ∈ 𝑆))
21 aovvdm 44564 . . . . . 6 ( ((𝐴𝐺𝐵)) ∈ 𝑆 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐺)
221eleq2i 2830 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ dom 𝐺 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆))
23 opelxp 5616 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
2422, 23bitri 274 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ dom 𝐺 ↔ (𝐴𝑆𝐵𝑆))
251eleq2i 2830 . . . . . . . . . 10 (⟨𝐴, 𝐶⟩ ∈ dom 𝐺 ↔ ⟨𝐴, 𝐶⟩ ∈ (𝑆 × 𝑆))
26 opelxp 5616 . . . . . . . . . 10 (⟨𝐴, 𝐶⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐶𝑆))
2725, 26bitri 274 . . . . . . . . 9 (⟨𝐴, 𝐶⟩ ∈ dom 𝐺 ↔ (𝐴𝑆𝐶𝑆))
28 simpll 763 . . . . . . . . . . 11 (((𝐴𝑆𝐶𝑆) ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
29 simprr 769 . . . . . . . . . . 11 (((𝐴𝑆𝐶𝑆) ∧ (𝐴𝑆𝐵𝑆)) → 𝐵𝑆)
30 simplr 765 . . . . . . . . . . 11 (((𝐴𝑆𝐶𝑆) ∧ (𝐴𝑆𝐵𝑆)) → 𝐶𝑆)
3128, 29, 303jca 1126 . . . . . . . . . 10 (((𝐴𝑆𝐶𝑆) ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝑆𝐵𝑆𝐶𝑆))
3231ex 412 . . . . . . . . 9 ((𝐴𝑆𝐶𝑆) → ((𝐴𝑆𝐵𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3327, 32sylbi 216 . . . . . . . 8 (⟨𝐴, 𝐶⟩ ∈ dom 𝐺 → ((𝐴𝑆𝐵𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆)))
34 aovvdm 44564 . . . . . . . 8 ( ((𝐴𝐺𝐶)) ∈ 𝑆 → ⟨𝐴, 𝐶⟩ ∈ dom 𝐺)
3533, 34syl11 33 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → ( ((𝐴𝐺𝐶)) ∈ 𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3624, 35sylbi 216 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ dom 𝐺 → ( ((𝐴𝐺𝐶)) ∈ 𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3721, 36syl 17 . . . . 5 ( ((𝐴𝐺𝐵)) ∈ 𝑆 → ( ((𝐴𝐺𝐶)) ∈ 𝑆 → (𝐴𝑆𝐵𝑆𝐶𝑆)))
3837imp 406 . . . 4 (( ((𝐴𝐺𝐵)) ∈ 𝑆 ∧ ((𝐴𝐺𝐶)) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
3920, 38sylbi 216 . . 3 (⟨ ((𝐴𝐺𝐵)) , ((𝐴𝐺𝐶)) ⟩ ∈ dom 𝐹 → (𝐴𝑆𝐵𝑆𝐶𝑆))
40 ndmaov 44562 . . 3 (¬ ⟨ ((𝐴𝐺𝐵)) , ((𝐴𝐺𝐶)) ⟩ ∈ dom 𝐹 → (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) = V)
4139, 40nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) = V)
4217, 41eqtr4d 2781 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  dom cdm 5580   ((caov 44497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499  df-aov 44500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator