MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpidtr Structured version   Visualization version   GIF version

Theorem xpidtr 6123
Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)

Proof of Theorem xpidtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5722 . . . . . 6 (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥𝐴𝑦𝐴))
2 brxp 5722 . . . . . . . . 9 (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦𝐴𝑧𝐴))
3 brxp 5722 . . . . . . . . . 10 (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥𝐴𝑧𝐴))
43simplbi2com 502 . . . . . . . . 9 (𝑧𝐴 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
52, 4simplbiim 504 . . . . . . . 8 (𝑦(𝐴 × 𝐴)𝑧 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
65com12 32 . . . . . . 7 (𝑥𝐴 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
76adantr 480 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
81, 7sylbi 216 . . . . 5 (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
98imp 406 . . . 4 ((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
109ax-gen 1790 . . 3 𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
1110gen2 1791 . 2 𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
12 cotr 6111 . 2 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧))
1311, 12mpbir 230 1 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1532  wcel 2099  wss 3945   class class class wbr 5143   × cxp 5671  ccom 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-co 5682
This theorem is referenced by:  trinxp  6126  xpider  8801  trust  24128  rtrclex  43038  rtrclexi  43042
  Copyright terms: Public domain W3C validator