Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpidtr Structured version   Visualization version   GIF version

Theorem xpidtr 5959
 Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)

Proof of Theorem xpidtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5575 . . . . . 6 (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥𝐴𝑦𝐴))
2 brxp 5575 . . . . . . . . 9 (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦𝐴𝑧𝐴))
3 brxp 5575 . . . . . . . . . 10 (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥𝐴𝑧𝐴))
43simplbi2com 506 . . . . . . . . 9 (𝑧𝐴 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
52, 4simplbiim 508 . . . . . . . 8 (𝑦(𝐴 × 𝐴)𝑧 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
65com12 32 . . . . . . 7 (𝑥𝐴 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
76adantr 484 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
81, 7sylbi 220 . . . . 5 (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
98imp 410 . . . 4 ((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
109ax-gen 1797 . . 3 𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
1110gen2 1798 . 2 𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
12 cotr 5949 . 2 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧))
1311, 12mpbir 234 1 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∀wal 1536   ∈ wcel 2111   ⊆ wss 3860   class class class wbr 5036   × cxp 5526   ∘ ccom 5532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-rel 5535  df-co 5537 This theorem is referenced by:  trinxp  5962  xpider  8384  trust  22943  rtrclex  40725  rtrclexi  40729
 Copyright terms: Public domain W3C validator