| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpidtr | Structured version Visualization version GIF version | ||
| Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
| Ref | Expression |
|---|---|
| xpidtr | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxp 5690 | . . . . . 6 ⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
| 2 | brxp 5690 | . . . . . . . . 9 ⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
| 3 | brxp 5690 | . . . . . . . . . 10 ⊢ (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
| 4 | 3 | simplbi2com 502 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 5 | 2, 4 | simplbiim 504 | . . . . . . . 8 ⊢ (𝑦(𝐴 × 𝐴)𝑧 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 6 | 5 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 8 | 1, 7 | sylbi 217 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
| 9 | 8 | imp 406 | . . . 4 ⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
| 10 | 9 | ax-gen 1795 | . . 3 ⊢ ∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
| 11 | 10 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
| 12 | cotr 6086 | . 2 ⊢ (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)) | |
| 13 | 11, 12 | mpbir 231 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-co 5650 |
| This theorem is referenced by: trinxp 6101 xpider 8764 trust 24124 rtrclex 43613 rtrclexi 43617 |
| Copyright terms: Public domain | W3C validator |