![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpidtr | Structured version Visualization version GIF version |
Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
Ref | Expression |
---|---|
xpidtr | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brxp 5685 | . . . . . 6 ⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
2 | brxp 5685 | . . . . . . . . 9 ⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
3 | brxp 5685 | . . . . . . . . . 10 ⊢ (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
4 | 3 | simplbi2com 504 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
5 | 2, 4 | simplbiim 506 | . . . . . . . 8 ⊢ (𝑦(𝐴 × 𝐴)𝑧 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
6 | 5 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
7 | 6 | adantr 482 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
8 | 1, 7 | sylbi 216 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
9 | 8 | imp 408 | . . . 4 ⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
10 | 9 | ax-gen 1798 | . . 3 ⊢ ∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
11 | 10 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
12 | cotr 6068 | . 2 ⊢ (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)) | |
13 | 11, 12 | mpbir 230 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 ⊆ wss 3914 class class class wbr 5109 × cxp 5635 ∘ ccom 5641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-co 5646 |
This theorem is referenced by: trinxp 6083 xpider 8733 trust 23604 rtrclex 41981 rtrclexi 41985 |
Copyright terms: Public domain | W3C validator |