MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  insubm Structured version   Visualization version   GIF version

Theorem insubm 18803
Description: The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
Assertion
Ref Expression
insubm ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴𝐵) ∈ (SubMnd‘𝑀))

Proof of Theorem insubm
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18787 . . 3 (𝐴 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 ssinss1 4236 . . . . . . . . 9 (𝐴 ⊆ (Base‘𝑀) → (𝐴𝐵) ⊆ (Base‘𝑀))
323ad2ant1 1130 . . . . . . . 8 ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) → (𝐴𝐵) ⊆ (Base‘𝑀))
43ad2antrl 726 . . . . . . 7 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → (𝐴𝐵) ⊆ (Base‘𝑀))
5 elin 3962 . . . . . . . . . . . . 13 ((0g𝑀) ∈ (𝐴𝐵) ↔ ((0g𝑀) ∈ 𝐴 ∧ (0g𝑀) ∈ 𝐵))
65simplbi2com 501 . . . . . . . . . . . 12 ((0g𝑀) ∈ 𝐵 → ((0g𝑀) ∈ 𝐴 → (0g𝑀) ∈ (𝐴𝐵)))
763ad2ant2 1131 . . . . . . . . . . 11 ((𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵) → ((0g𝑀) ∈ 𝐴 → (0g𝑀) ∈ (𝐴𝐵)))
87com12 32 . . . . . . . . . 10 ((0g𝑀) ∈ 𝐴 → ((𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵) → (0g𝑀) ∈ (𝐴𝐵)))
983ad2ant2 1131 . . . . . . . . 9 ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) → ((𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵) → (0g𝑀) ∈ (𝐴𝐵)))
109imp 405 . . . . . . . 8 (((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)) → (0g𝑀) ∈ (𝐴𝐵))
1110adantl 480 . . . . . . 7 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → (0g𝑀) ∈ (𝐴𝐵))
12 elin 3962 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
13 elin 3962 . . . . . . . . . 10 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
1412, 13anbi12i 626 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)))
15 oveq1 7423 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑎(+g𝑀)𝑏) = (𝑥(+g𝑀)𝑏))
1615eleq1d 2811 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑎(+g𝑀)𝑏) ∈ 𝐴 ↔ (𝑥(+g𝑀)𝑏) ∈ 𝐴))
17 oveq2 7424 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑥(+g𝑀)𝑏) = (𝑥(+g𝑀)𝑦))
1817eleq1d 2811 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → ((𝑥(+g𝑀)𝑏) ∈ 𝐴 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝐴))
19 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑥𝐵) → 𝑥𝐴)
2019adantr 479 . . . . . . . . . . . . . . . 16 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥𝐴)
21 eqidd 2727 . . . . . . . . . . . . . . . 16 ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) ∧ 𝑎 = 𝑥) → 𝐴 = 𝐴)
22 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴𝑦𝐵) → 𝑦𝐴)
2322adantl 480 . . . . . . . . . . . . . . . 16 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑦𝐴)
2416, 18, 20, 21, 23rspc2vd 3942 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴 → (𝑥(+g𝑀)𝑦) ∈ 𝐴))
2524com12 32 . . . . . . . . . . . . . 14 (∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐴))
26253ad2ant3 1132 . . . . . . . . . . . . 13 ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐴))
2726ad2antrl 726 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐴))
2827imp 405 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → (𝑥(+g𝑀)𝑦) ∈ 𝐴)
2915eleq1d 2811 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → ((𝑎(+g𝑀)𝑏) ∈ 𝐵 ↔ (𝑥(+g𝑀)𝑏) ∈ 𝐵))
3017eleq1d 2811 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → ((𝑥(+g𝑀)𝑏) ∈ 𝐵 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝐵))
31 simpr 483 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝑥𝐵) → 𝑥𝐵)
3231adantr 479 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥𝐵)
33 eqidd 2727 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) ∧ 𝑎 = 𝑥) → 𝐵 = 𝐵)
34 simpr 483 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐴𝑦𝐵) → 𝑦𝐵)
3534adantl 480 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑦𝐵)
3629, 30, 32, 33, 35rspc2vd 3942 . . . . . . . . . . . . . . . 16 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵 → (𝑥(+g𝑀)𝑦) ∈ 𝐵))
3736com12 32 . . . . . . . . . . . . . . 15 (∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵))
38373ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵))
3938adantl 480 . . . . . . . . . . . . 13 (((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵))
4039adantl 480 . . . . . . . . . . . 12 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵))
4140imp 405 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
4228, 41elind 4192 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → (𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵))
4342ex 411 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵)))
4414, 43biimtrid 241 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 ∈ (𝐴𝐵)) → (𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵)))
4544ralrimivv 3189 . . . . . . 7 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → ∀𝑥 ∈ (𝐴𝐵)∀𝑦 ∈ (𝐴𝐵)(𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵))
464, 11, 453jca 1125 . . . . . 6 ((𝑀 ∈ Mnd ∧ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))) → ((𝐴𝐵) ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)∀𝑦 ∈ (𝐴𝐵)(𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵)))
4746ex 411 . . . . 5 (𝑀 ∈ Mnd → (((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)) → ((𝐴𝐵) ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)∀𝑦 ∈ (𝐴𝐵)(𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵))))
48 eqid 2726 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
49 eqid 2726 . . . . . . 7 (0g𝑀) = (0g𝑀)
50 eqid 2726 . . . . . . 7 (+g𝑀) = (+g𝑀)
5148, 49, 50issubm 18788 . . . . . 6 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴)))
5248, 49, 50issubm 18788 . . . . . 6 (𝑀 ∈ Mnd → (𝐵 ∈ (SubMnd‘𝑀) ↔ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)))
5351, 52anbi12d 630 . . . . 5 (𝑀 ∈ Mnd → ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) ↔ ((𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎(+g𝑀)𝑏) ∈ 𝐴) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))))
5448, 49, 50issubm 18788 . . . . 5 (𝑀 ∈ Mnd → ((𝐴𝐵) ∈ (SubMnd‘𝑀) ↔ ((𝐴𝐵) ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)∀𝑦 ∈ (𝐴𝐵)(𝑥(+g𝑀)𝑦) ∈ (𝐴𝐵))))
5547, 53, 543imtr4d 293 . . . 4 (𝑀 ∈ Mnd → ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴𝐵) ∈ (SubMnd‘𝑀)))
5655expd 414 . . 3 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) → (𝐵 ∈ (SubMnd‘𝑀) → (𝐴𝐵) ∈ (SubMnd‘𝑀))))
571, 56mpcom 38 . 2 (𝐴 ∈ (SubMnd‘𝑀) → (𝐵 ∈ (SubMnd‘𝑀) → (𝐴𝐵) ∈ (SubMnd‘𝑀)))
5857imp 405 1 ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴𝐵) ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wcel 2099  wral 3051  cin 3945  wss 3946  cfv 6546  (class class class)co 7416  Basecbs 17208  +gcplusg 17261  0gc0g 17449  Mndcmnd 18722  SubMndcsubmnd 18767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fv 6554  df-ov 7419  df-submnd 18769
This theorem is referenced by:  symgsubmefmnd  19392
  Copyright terms: Public domain W3C validator