Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoressn Structured version   Visualization version   GIF version

Theorem funcoressn 44536
Description: A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funcoressn ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))

Proof of Theorem funcoressn
StepHypRef Expression
1 dmressnsn 5933 . . . . . . . 8 ((𝐺𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)})
2 df-fn 6436 . . . . . . . . 9 ((𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)} ↔ (Fun (𝐹 ↾ {(𝐺𝑋)}) ∧ dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)}))
32simplbi2com 503 . . . . . . . 8 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (Fun (𝐹 ↾ {(𝐺𝑋)}) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)}))
41, 3syl 17 . . . . . . 7 ((𝐺𝑋) ∈ dom 𝐹 → (Fun (𝐹 ↾ {(𝐺𝑋)}) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)}))
54imp 407 . . . . . 6 (((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)})
65adantr 481 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)})
7 fnsnfv 6847 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
87adantl 482 . . . . . . . 8 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
9 df-ima 5602 . . . . . . . 8 (𝐺 “ {𝑋}) = ran (𝐺 ↾ {𝑋})
108, 9eqtrdi 2794 . . . . . . 7 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → {(𝐺𝑋)} = ran (𝐺 ↾ {𝑋}))
1110reseq2d 5891 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ↾ {(𝐺𝑋)}) = (𝐹 ↾ ran (𝐺 ↾ {𝑋})))
1211, 10fneq12d 6528 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)} ↔ (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋})))
136, 12mpbid 231 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}))
14 fnfun 6533 . . . . . . 7 (𝐺 Fn 𝐴 → Fun 𝐺)
15 funres 6476 . . . . . . . 8 (Fun 𝐺 → Fun (𝐺 ↾ {𝑋}))
1615funfnd 6465 . . . . . . 7 (Fun 𝐺 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
1714, 16syl 17 . . . . . 6 (𝐺 Fn 𝐴 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
1817adantr 481 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
1918adantl 482 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
20 fnresfnco 44535 . . . 4 (((𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}) ∧ (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}))
2113, 19, 20syl2anc 584 . . 3 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}))
22 fnfun 6533 . . 3 ((𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋})))
2321, 22syl 17 . 2 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋})))
24 resco 6154 . . 3 ((𝐹𝐺) ↾ {𝑋}) = (𝐹 ∘ (𝐺 ↾ {𝑋}))
2524funeqi 6455 . 2 (Fun ((𝐹𝐺) ↾ {𝑋}) ↔ Fun (𝐹 ∘ (𝐺 ↾ {𝑋})))
2623, 25sylibr 233 1 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6427   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  afvco2  44668
  Copyright terms: Public domain W3C validator