Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoressn Structured version   Visualization version   GIF version

Theorem funcoressn 47156
Description: A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funcoressn ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))

Proof of Theorem funcoressn
StepHypRef Expression
1 dmressnsn 5979 . . . . . . . 8 ((𝐺𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)})
2 df-fn 6492 . . . . . . . . 9 ((𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)} ↔ (Fun (𝐹 ↾ {(𝐺𝑋)}) ∧ dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)}))
32simplbi2com 502 . . . . . . . 8 (dom (𝐹 ↾ {(𝐺𝑋)}) = {(𝐺𝑋)} → (Fun (𝐹 ↾ {(𝐺𝑋)}) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)}))
41, 3syl 17 . . . . . . 7 ((𝐺𝑋) ∈ dom 𝐹 → (Fun (𝐹 ↾ {(𝐺𝑋)}) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)}))
54imp 406 . . . . . 6 (((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)})
65adantr 480 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)})
7 fnsnfv 6910 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑋𝐴) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
87adantl 481 . . . . . . . 8 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → {(𝐺𝑋)} = (𝐺 “ {𝑋}))
9 df-ima 5634 . . . . . . . 8 (𝐺 “ {𝑋}) = ran (𝐺 ↾ {𝑋})
108, 9eqtrdi 2784 . . . . . . 7 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → {(𝐺𝑋)} = ran (𝐺 ↾ {𝑋}))
1110reseq2d 5935 . . . . . 6 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ↾ {(𝐺𝑋)}) = (𝐹 ↾ ran (𝐺 ↾ {𝑋})))
1211, 10fneq12d 6584 . . . . 5 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → ((𝐹 ↾ {(𝐺𝑋)}) Fn {(𝐺𝑋)} ↔ (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋})))
136, 12mpbid 232 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}))
14 fnfun 6589 . . . . . . 7 (𝐺 Fn 𝐴 → Fun 𝐺)
15 funres 6531 . . . . . . . 8 (Fun 𝐺 → Fun (𝐺 ↾ {𝑋}))
1615funfnd 6520 . . . . . . 7 (Fun 𝐺 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
1714, 16syl 17 . . . . . 6 (𝐺 Fn 𝐴 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
1817adantr 480 . . . . 5 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
1918adantl 481 . . . 4 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋}))
20 fnresfnco 47155 . . . 4 (((𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}) ∧ (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}))
2113, 19, 20syl2anc 584 . . 3 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}))
22 fnfun 6589 . . 3 ((𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋})))
2321, 22syl 17 . 2 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋})))
24 resco 6205 . . 3 ((𝐹𝐺) ↾ {𝑋}) = (𝐹 ∘ (𝐺 ↾ {𝑋}))
2524funeqi 6510 . 2 (Fun ((𝐹𝐺) ↾ {𝑋}) ↔ Fun (𝐹 ∘ (𝐺 ↾ {𝑋})))
2623, 25sylibr 234 1 ((((𝐺𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺𝑋)})) ∧ (𝐺 Fn 𝐴𝑋𝐴)) → Fun ((𝐹𝐺) ↾ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {csn 4577  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  ccom 5625  Fun wfun 6483   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by:  afvco2  47290
  Copyright terms: Public domain W3C validator