Proof of Theorem funcoressn
| Step | Hyp | Ref
| Expression |
| 1 | | dmressnsn 6040 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)}) |
| 2 | | df-fn 6563 |
. . . . . . . . 9
⊢ ((𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)} ↔ (Fun (𝐹 ↾ {(𝐺‘𝑋)}) ∧ dom (𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)})) |
| 3 | 2 | simplbi2com 502 |
. . . . . . . 8
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (Fun (𝐹 ↾ {(𝐺‘𝑋)}) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)})) |
| 4 | 1, 3 | syl 17 |
. . . . . . 7
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → (Fun (𝐹 ↾ {(𝐺‘𝑋)}) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)})) |
| 5 | 4 | imp 406 |
. . . . . 6
⊢ (((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)}) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)}) |
| 7 | | fnsnfv 6987 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) |
| 8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) |
| 9 | | df-ima 5697 |
. . . . . . . 8
⊢ (𝐺 “ {𝑋}) = ran (𝐺 ↾ {𝑋}) |
| 10 | 8, 9 | eqtrdi 2792 |
. . . . . . 7
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → {(𝐺‘𝑋)} = ran (𝐺 ↾ {𝑋})) |
| 11 | 10 | reseq2d 5996 |
. . . . . 6
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ↾ {(𝐺‘𝑋)}) = (𝐹 ↾ ran (𝐺 ↾ {𝑋}))) |
| 12 | 11, 10 | fneq12d 6662 |
. . . . 5
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)} ↔ (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}))) |
| 13 | 6, 12 | mpbid 232 |
. . . 4
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋})) |
| 14 | | fnfun 6667 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 → Fun 𝐺) |
| 15 | | funres 6607 |
. . . . . . . 8
⊢ (Fun
𝐺 → Fun (𝐺 ↾ {𝑋})) |
| 16 | 15 | funfnd 6596 |
. . . . . . 7
⊢ (Fun
𝐺 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
| 17 | 14, 16 | syl 17 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
| 18 | 17 | adantr 480 |
. . . . 5
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
| 19 | 18 | adantl 481 |
. . . 4
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
| 20 | | fnresfnco 47058 |
. . . 4
⊢ (((𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}) ∧ (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋})) |
| 21 | 13, 19, 20 | syl2anc 584 |
. . 3
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋})) |
| 22 | | fnfun 6667 |
. . 3
⊢ ((𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋}))) |
| 23 | 21, 22 | syl 17 |
. 2
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋}))) |
| 24 | | resco 6269 |
. . 3
⊢ ((𝐹 ∘ 𝐺) ↾ {𝑋}) = (𝐹 ∘ (𝐺 ↾ {𝑋})) |
| 25 | 24 | funeqi 6586 |
. 2
⊢ (Fun
((𝐹 ∘ 𝐺) ↾ {𝑋}) ↔ Fun (𝐹 ∘ (𝐺 ↾ {𝑋}))) |
| 26 | 23, 25 | sylibr 234 |
1
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) |