Proof of Theorem funcoressn
Step | Hyp | Ref
| Expression |
1 | | dmressnsn 5688 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → dom (𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)}) |
2 | | df-fn 6138 |
. . . . . . . . 9
⊢ ((𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)} ↔ (Fun (𝐹 ↾ {(𝐺‘𝑋)}) ∧ dom (𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)})) |
3 | 2 | simplbi2com 498 |
. . . . . . . 8
⊢ (dom
(𝐹 ↾ {(𝐺‘𝑋)}) = {(𝐺‘𝑋)} → (Fun (𝐹 ↾ {(𝐺‘𝑋)}) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)})) |
4 | 1, 3 | syl 17 |
. . . . . . 7
⊢ ((𝐺‘𝑋) ∈ dom 𝐹 → (Fun (𝐹 ↾ {(𝐺‘𝑋)}) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)})) |
5 | 4 | imp 397 |
. . . . . 6
⊢ (((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)}) |
6 | 5 | adantr 474 |
. . . . 5
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)}) |
7 | | fnsnfv 6518 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) |
8 | 7 | adantl 475 |
. . . . . . . 8
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → {(𝐺‘𝑋)} = (𝐺 “ {𝑋})) |
9 | | df-ima 5368 |
. . . . . . . 8
⊢ (𝐺 “ {𝑋}) = ran (𝐺 ↾ {𝑋}) |
10 | 8, 9 | syl6eq 2830 |
. . . . . . 7
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → {(𝐺‘𝑋)} = ran (𝐺 ↾ {𝑋})) |
11 | 10 | reseq2d 5642 |
. . . . . 6
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ↾ {(𝐺‘𝑋)}) = (𝐹 ↾ ran (𝐺 ↾ {𝑋}))) |
12 | 11, 10 | fneq12d 6228 |
. . . . 5
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ↾ {(𝐺‘𝑋)}) Fn {(𝐺‘𝑋)} ↔ (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}))) |
13 | 6, 12 | mpbid 224 |
. . . 4
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋})) |
14 | | fnfun 6233 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 → Fun 𝐺) |
15 | | funres 6177 |
. . . . . . . 8
⊢ (Fun
𝐺 → Fun (𝐺 ↾ {𝑋})) |
16 | | funfn 6165 |
. . . . . . . 8
⊢ (Fun
(𝐺 ↾ {𝑋}) ↔ (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
17 | 15, 16 | sylib 210 |
. . . . . . 7
⊢ (Fun
𝐺 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
18 | 14, 17 | syl 17 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
19 | 18 | adantr 474 |
. . . . 5
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
20 | 19 | adantl 475 |
. . . 4
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) |
21 | | fnresfnco 42105 |
. . . 4
⊢ (((𝐹 ↾ ran (𝐺 ↾ {𝑋})) Fn ran (𝐺 ↾ {𝑋}) ∧ (𝐺 ↾ {𝑋}) Fn dom (𝐺 ↾ {𝑋})) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋})) |
22 | 13, 20, 21 | syl2anc 579 |
. . 3
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋})) |
23 | | fnfun 6233 |
. . 3
⊢ ((𝐹 ∘ (𝐺 ↾ {𝑋})) Fn dom (𝐺 ↾ {𝑋}) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋}))) |
24 | 22, 23 | syl 17 |
. 2
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ∘ (𝐺 ↾ {𝑋}))) |
25 | | resco 5893 |
. . 3
⊢ ((𝐹 ∘ 𝐺) ↾ {𝑋}) = (𝐹 ∘ (𝐺 ↾ {𝑋})) |
26 | 25 | funeqi 6156 |
. 2
⊢ (Fun
((𝐹 ∘ 𝐺) ↾ {𝑋}) ↔ Fun (𝐹 ∘ (𝐺 ↾ {𝑋}))) |
27 | 24, 26 | sylibr 226 |
1
⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) |