MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmporab1w Structured version   Visualization version   GIF version

Theorem elovmporab1w 7663
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. Version of elovmporab1 7664 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Alexander van der Vekens, 15-Jul-2018.) Avoid ax-13 2375. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
elovmporab1w.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑})
elovmporab1w.v ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elovmporab1w (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝑍   𝑥,𝑚,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚)   𝑀(𝑚)   𝑂(𝑥,𝑦,𝑧,𝑚)   𝑋(𝑚)   𝑌(𝑚)   𝑍(𝑥,𝑦,𝑚)

Proof of Theorem elovmporab1w
StepHypRef Expression
1 elovmporab1w.o . . 3 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑})
21elmpocl 7657 . 2 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
31a1i 11 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑}))
4 csbeq1 3884 . . . . . . 7 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
54ad2antrl 728 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
6 sbceq1a 3783 . . . . . . . 8 (𝑦 = 𝑌 → (𝜑[𝑌 / 𝑦]𝜑))
7 sbceq1a 3783 . . . . . . . 8 (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
86, 7sylan9bbr 510 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
98adantl 481 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
105, 9rabeqbidv 3439 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑥 / 𝑚𝑀𝜑} = {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
11 eqidd 2735 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V)
12 simpl 482 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
13 simpr 484 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
14 elovmporab1w.v . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 / 𝑚𝑀 ∈ V)
15 rabexg 5319 . . . . . 6 (𝑋 / 𝑚𝑀 ∈ V → {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1614, 15syl 17 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
17 nfcv 2897 . . . . . . 7 𝑥𝑋
1817nfel1 2914 . . . . . 6 𝑥 𝑋 ∈ V
19 nfcv 2897 . . . . . . 7 𝑥𝑌
2019nfel1 2914 . . . . . 6 𝑥 𝑌 ∈ V
2118, 20nfan 1898 . . . . 5 𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V)
22 nfcv 2897 . . . . . . 7 𝑦𝑋
2322nfel1 2914 . . . . . 6 𝑦 𝑋 ∈ V
24 nfcv 2897 . . . . . . 7 𝑦𝑌
2524nfel1 2914 . . . . . 6 𝑦 𝑌 ∈ V
2623, 25nfan 1898 . . . . 5 𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V)
27 nfsbc1v 3792 . . . . . 6 𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
28 nfcv 2897 . . . . . . 7 𝑥𝑀
2917, 28nfcsbw 3907 . . . . . 6 𝑥𝑋 / 𝑚𝑀
3027, 29nfrabw 3459 . . . . 5 𝑥{𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
31 nfsbc1v 3792 . . . . . . 7 𝑦[𝑌 / 𝑦]𝜑
3222, 31nfsbcw 3794 . . . . . 6 𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
33 nfcv 2897 . . . . . . 7 𝑦𝑀
3422, 33nfcsbw 3907 . . . . . 6 𝑦𝑋 / 𝑚𝑀
3532, 34nfrabw 3459 . . . . 5 𝑦{𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
363, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35ovmpodxf 7566 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
3736eleq2d 2819 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
38 df-3an 1088 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍𝑋 / 𝑚𝑀))
3938simplbi2com 502 . . . 4 (𝑍𝑋 / 𝑚𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
40 elrabi 3671 . . . 4 (𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍𝑋 / 𝑚𝑀)
4139, 40syl11 33 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
4237, 41sylbid 240 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
432, 42mpcom 38 1 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3420  Vcvv 3464  [wsbc 3772  csb 3881  (class class class)co 7414  cmpo 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419
This theorem is referenced by:  elovmpowrd  14579
  Copyright terms: Public domain W3C validator