Proof of Theorem elovmporab1w
| Step | Hyp | Ref
| Expression |
| 1 | | elovmporab1w.o |
. . 3
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
| 2 | 1 | elmpocl 7657 |
. 2
⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 3 | 1 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑})) |
| 4 | | csbeq1 3884 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) |
| 5 | 4 | ad2antrl 728 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) |
| 6 | | sbceq1a 3783 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝜑 ↔ [𝑌 / 𝑦]𝜑)) |
| 7 | | sbceq1a 3783 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
| 8 | 6, 7 | sylan9bbr 510 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
| 9 | 8 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
| 10 | 5, 9 | rabeqbidv 3439 |
. . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) |
| 11 | | eqidd 2735 |
. . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V) |
| 12 | | simpl 482 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V) |
| 13 | | simpr 484 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V) |
| 14 | | elovmporab1w.v |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
| 15 | | rabexg 5319 |
. . . . . 6
⊢
(⦋𝑋 /
𝑚⦌𝑀 ∈ V → {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
| 16 | 14, 15 | syl 17 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
| 17 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑥𝑋 |
| 18 | 17 | nfel1 2914 |
. . . . . 6
⊢
Ⅎ𝑥 𝑋 ∈ V |
| 19 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑥𝑌 |
| 20 | 19 | nfel1 2914 |
. . . . . 6
⊢
Ⅎ𝑥 𝑌 ∈ V |
| 21 | 18, 20 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V) |
| 22 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑦𝑋 |
| 23 | 22 | nfel1 2914 |
. . . . . 6
⊢
Ⅎ𝑦 𝑋 ∈ V |
| 24 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑦𝑌 |
| 25 | 24 | nfel1 2914 |
. . . . . 6
⊢
Ⅎ𝑦 𝑌 ∈ V |
| 26 | 23, 25 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V) |
| 27 | | nfsbc1v 3792 |
. . . . . 6
⊢
Ⅎ𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
| 28 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑥𝑀 |
| 29 | 17, 28 | nfcsbw 3907 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
| 30 | 27, 29 | nfrabw 3459 |
. . . . 5
⊢
Ⅎ𝑥{𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} |
| 31 | | nfsbc1v 3792 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑌 / 𝑦]𝜑 |
| 32 | 22, 31 | nfsbcw 3794 |
. . . . . 6
⊢
Ⅎ𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
| 33 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑦𝑀 |
| 34 | 22, 33 | nfcsbw 3907 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑋 / 𝑚⦌𝑀 |
| 35 | 32, 34 | nfrabw 3459 |
. . . . 5
⊢
Ⅎ𝑦{𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} |
| 36 | 3, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35 | ovmpodxf 7566 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) |
| 37 | 36 | eleq2d 2819 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
| 38 | | df-3an 1088 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| 39 | 38 | simplbi2com 502 |
. . . 4
⊢ (𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 40 | | elrabi 3671 |
. . . 4
⊢ (𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀) |
| 41 | 39, 40 | syl11 33 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 42 | 37, 41 | sylbid 240 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 43 | 2, 42 | mpcom 38 |
1
⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |