![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inficl | Structured version Visualization version GIF version |
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
inficl | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfii 9457 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
2 | eqimss2 4055 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → 𝐴 ⊆ 𝑧) | |
3 | 2 | biantrurd 532 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧))) |
4 | eleq2 2828 | . . . . . . . . 9 ⊢ (𝑧 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ 𝐴)) | |
5 | 4 | raleqbi1dv 3336 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) |
6 | 5 | raleqbi1dv 3336 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) |
7 | 3, 6 | bitr3d 281 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) |
8 | 7 | elabg 3677 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) |
9 | intss1 4968 | . . . . 5 ⊢ (𝐴 ∈ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} → ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ 𝐴) | |
10 | 8, 9 | biimtrrdi 254 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ 𝐴)) |
11 | dffi2 9461 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) | |
12 | 11 | sseq1d 4027 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((fi‘𝐴) ⊆ 𝐴 ↔ ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ 𝐴)) |
13 | 10, 12 | sylibrd 259 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → (fi‘𝐴) ⊆ 𝐴)) |
14 | eqss 4011 | . . . 4 ⊢ ((fi‘𝐴) = 𝐴 ↔ ((fi‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (fi‘𝐴))) | |
15 | 14 | simplbi2com 502 | . . 3 ⊢ (𝐴 ⊆ (fi‘𝐴) → ((fi‘𝐴) ⊆ 𝐴 → (fi‘𝐴) = 𝐴)) |
16 | 1, 13, 15 | sylsyld 61 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → (fi‘𝐴) = 𝐴)) |
17 | fiin 9460 | . . . 4 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
18 | 17 | rgen2 3197 | . . 3 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) |
19 | eleq2 2828 | . . . . 5 ⊢ ((fi‘𝐴) = 𝐴 → ((𝑥 ∩ 𝑦) ∈ (fi‘𝐴) ↔ (𝑥 ∩ 𝑦) ∈ 𝐴)) | |
20 | 19 | raleqbi1dv 3336 | . . . 4 ⊢ ((fi‘𝐴) = 𝐴 → (∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) |
21 | 20 | raleqbi1dv 3336 | . . 3 ⊢ ((fi‘𝐴) = 𝐴 → (∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) |
22 | 18, 21 | mpbii 233 | . 2 ⊢ ((fi‘𝐴) = 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) |
23 | 16, 22 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∩ cin 3962 ⊆ wss 3963 ∩ cint 4951 ‘cfv 6563 ficfi 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-2o 8506 df-en 8985 df-fin 8988 df-fi 9449 |
This theorem is referenced by: fipwuni 9464 fisn 9465 fitop 22922 ordtbaslem 23212 ptbasin2 23602 filfi 23883 fmfnfmlem3 23980 ustuqtop2 24267 ldgenpisys 34147 |
Copyright terms: Public domain | W3C validator |