|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > inficl | Structured version Visualization version GIF version | ||
| Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| inficl | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssfii 9460 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
| 2 | eqimss2 4042 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → 𝐴 ⊆ 𝑧) | |
| 3 | 2 | biantrurd 532 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧))) | 
| 4 | eleq2 2829 | . . . . . . . . 9 ⊢ (𝑧 = 𝐴 → ((𝑥 ∩ 𝑦) ∈ 𝑧 ↔ (𝑥 ∩ 𝑦) ∈ 𝐴)) | |
| 5 | 4 | raleqbi1dv 3337 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 6 | 5 | raleqbi1dv 3337 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 7 | 3, 6 | bitr3d 281 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 8 | 7 | elabg 3675 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 9 | intss1 4962 | . . . . 5 ⊢ (𝐴 ∈ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} → ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ 𝐴) | |
| 10 | 8, 9 | biimtrrdi 254 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ 𝐴)) | 
| 11 | dffi2 9464 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) | |
| 12 | 11 | sseq1d 4014 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((fi‘𝐴) ⊆ 𝐴 ↔ ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)} ⊆ 𝐴)) | 
| 13 | 10, 12 | sylibrd 259 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → (fi‘𝐴) ⊆ 𝐴)) | 
| 14 | eqss 3998 | . . . 4 ⊢ ((fi‘𝐴) = 𝐴 ↔ ((fi‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (fi‘𝐴))) | |
| 15 | 14 | simplbi2com 502 | . . 3 ⊢ (𝐴 ⊆ (fi‘𝐴) → ((fi‘𝐴) ⊆ 𝐴 → (fi‘𝐴) = 𝐴)) | 
| 16 | 1, 13, 15 | sylsyld 61 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → (fi‘𝐴) = 𝐴)) | 
| 17 | fiin 9463 | . . . 4 ⊢ ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥 ∩ 𝑦) ∈ (fi‘𝐴)) | |
| 18 | 17 | rgen2 3198 | . . 3 ⊢ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) | 
| 19 | eleq2 2829 | . . . . 5 ⊢ ((fi‘𝐴) = 𝐴 → ((𝑥 ∩ 𝑦) ∈ (fi‘𝐴) ↔ (𝑥 ∩ 𝑦) ∈ 𝐴)) | |
| 20 | 19 | raleqbi1dv 3337 | . . . 4 ⊢ ((fi‘𝐴) = 𝐴 → (∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) ↔ ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 21 | 20 | raleqbi1dv 3337 | . . 3 ⊢ ((fi‘𝐴) = 𝐴 → (∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥 ∩ 𝑦) ∈ (fi‘𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴)) | 
| 22 | 18, 21 | mpbii 233 | . 2 ⊢ ((fi‘𝐴) = 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | 
| 23 | 16, 22 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 ∩ cin 3949 ⊆ wss 3950 ∩ cint 4945 ‘cfv 6560 ficfi 9451 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1o 8507 df-2o 8508 df-en 8987 df-fin 8990 df-fi 9452 | 
| This theorem is referenced by: fipwuni 9467 fisn 9468 fitop 22907 ordtbaslem 23197 ptbasin2 23587 filfi 23868 fmfnfmlem3 23965 ustuqtop2 24252 ldgenpisys 34168 | 
| Copyright terms: Public domain | W3C validator |