MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inficl Structured version   Visualization version   GIF version

Theorem inficl 9316
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
inficl (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem inficl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssfii 9310 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
2 eqimss2 3990 . . . . . . . 8 (𝑧 = 𝐴𝐴𝑧)
32biantrurd 532 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)))
4 eleq2 2822 . . . . . . . . 9 (𝑧 = 𝐴 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐴))
54raleqbi1dv 3305 . . . . . . . 8 (𝑧 = 𝐴 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
65raleqbi1dv 3305 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
73, 6bitr3d 281 . . . . . 6 (𝑧 = 𝐴 → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
87elabg 3628 . . . . 5 (𝐴𝑉 → (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
9 intss1 4913 . . . . 5 (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴)
108, 9biimtrrdi 254 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
11 dffi2 9314 . . . . 5 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
1211sseq1d 3962 . . . 4 (𝐴𝑉 → ((fi‘𝐴) ⊆ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
1310, 12sylibrd 259 . . 3 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) ⊆ 𝐴))
14 eqss 3946 . . . 4 ((fi‘𝐴) = 𝐴 ↔ ((fi‘𝐴) ⊆ 𝐴𝐴 ⊆ (fi‘𝐴)))
1514simplbi2com 502 . . 3 (𝐴 ⊆ (fi‘𝐴) → ((fi‘𝐴) ⊆ 𝐴 → (fi‘𝐴) = 𝐴))
161, 13, 15sylsyld 61 . 2 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) = 𝐴))
17 fiin 9313 . . . 4 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
1817rgen2 3173 . . 3 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
19 eleq2 2822 . . . . 5 ((fi‘𝐴) = 𝐴 → ((𝑥𝑦) ∈ (fi‘𝐴) ↔ (𝑥𝑦) ∈ 𝐴))
2019raleqbi1dv 3305 . . . 4 ((fi‘𝐴) = 𝐴 → (∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2120raleqbi1dv 3305 . . 3 ((fi‘𝐴) = 𝐴 → (∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2218, 21mpbii 233 . 2 ((fi‘𝐴) = 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
2316, 22impbid1 225 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  cin 3897  wss 3898   cint 4897  cfv 6486  ficfi 9301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-1o 8391  df-2o 8392  df-en 8876  df-fin 8879  df-fi 9302
This theorem is referenced by:  fipwuni  9317  fisn  9318  fitop  22816  ordtbaslem  23104  ptbasin2  23494  filfi  23775  fmfnfmlem3  23872  ustuqtop2  24158  ldgenpisys  34200
  Copyright terms: Public domain W3C validator