MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inficl Structured version   Visualization version   GIF version

Theorem inficl 8873
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
inficl (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem inficl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssfii 8867 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
2 eqimss2 3972 . . . . . . . 8 (𝑧 = 𝐴𝐴𝑧)
32biantrurd 536 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)))
4 eleq2 2878 . . . . . . . . 9 (𝑧 = 𝐴 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐴))
54raleqbi1dv 3356 . . . . . . . 8 (𝑧 = 𝐴 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
65raleqbi1dv 3356 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
73, 6bitr3d 284 . . . . . 6 (𝑧 = 𝐴 → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
87elabg 3614 . . . . 5 (𝐴𝑉 → (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
9 intss1 4853 . . . . 5 (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴)
108, 9syl6bir 257 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
11 dffi2 8871 . . . . 5 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
1211sseq1d 3946 . . . 4 (𝐴𝑉 → ((fi‘𝐴) ⊆ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
1310, 12sylibrd 262 . . 3 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) ⊆ 𝐴))
14 eqss 3930 . . . 4 ((fi‘𝐴) = 𝐴 ↔ ((fi‘𝐴) ⊆ 𝐴𝐴 ⊆ (fi‘𝐴)))
1514simplbi2com 506 . . 3 (𝐴 ⊆ (fi‘𝐴) → ((fi‘𝐴) ⊆ 𝐴 → (fi‘𝐴) = 𝐴))
161, 13, 15sylsyld 61 . 2 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) = 𝐴))
17 fiin 8870 . . . 4 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
1817rgen2 3168 . . 3 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
19 eleq2 2878 . . . . 5 ((fi‘𝐴) = 𝐴 → ((𝑥𝑦) ∈ (fi‘𝐴) ↔ (𝑥𝑦) ∈ 𝐴))
2019raleqbi1dv 3356 . . . 4 ((fi‘𝐴) = 𝐴 → (∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2120raleqbi1dv 3356 . . 3 ((fi‘𝐴) = 𝐴 → (∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2218, 21mpbii 236 . 2 ((fi‘𝐴) = 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
2316, 22impbid1 228 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  cin 3880  wss 3881   cint 4838  cfv 6324  ficfi 8858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859
This theorem is referenced by:  fipwuni  8874  fisn  8875  fitop  21505  ordtbaslem  21793  ptbasin2  22183  filfi  22464  fmfnfmlem3  22561  ustuqtop2  22848  ldgenpisys  31535
  Copyright terms: Public domain W3C validator