MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inficl Structured version   Visualization version   GIF version

Theorem inficl 9442
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
inficl (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem inficl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssfii 9436 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
2 eqimss2 4023 . . . . . . . 8 (𝑧 = 𝐴𝐴𝑧)
32biantrurd 532 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)))
4 eleq2 2824 . . . . . . . . 9 (𝑧 = 𝐴 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐴))
54raleqbi1dv 3321 . . . . . . . 8 (𝑧 = 𝐴 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
65raleqbi1dv 3321 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
73, 6bitr3d 281 . . . . . 6 (𝑧 = 𝐴 → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
87elabg 3660 . . . . 5 (𝐴𝑉 → (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
9 intss1 4944 . . . . 5 (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴)
108, 9biimtrrdi 254 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
11 dffi2 9440 . . . . 5 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
1211sseq1d 3995 . . . 4 (𝐴𝑉 → ((fi‘𝐴) ⊆ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
1310, 12sylibrd 259 . . 3 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) ⊆ 𝐴))
14 eqss 3979 . . . 4 ((fi‘𝐴) = 𝐴 ↔ ((fi‘𝐴) ⊆ 𝐴𝐴 ⊆ (fi‘𝐴)))
1514simplbi2com 502 . . 3 (𝐴 ⊆ (fi‘𝐴) → ((fi‘𝐴) ⊆ 𝐴 → (fi‘𝐴) = 𝐴))
161, 13, 15sylsyld 61 . 2 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) = 𝐴))
17 fiin 9439 . . . 4 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
1817rgen2 3185 . . 3 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
19 eleq2 2824 . . . . 5 ((fi‘𝐴) = 𝐴 → ((𝑥𝑦) ∈ (fi‘𝐴) ↔ (𝑥𝑦) ∈ 𝐴))
2019raleqbi1dv 3321 . . . 4 ((fi‘𝐴) = 𝐴 → (∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2120raleqbi1dv 3321 . . 3 ((fi‘𝐴) = 𝐴 → (∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2218, 21mpbii 233 . 2 ((fi‘𝐴) = 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
2316, 22impbid1 225 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  cin 3930  wss 3931   cint 4927  cfv 6536  ficfi 9427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-2o 8486  df-en 8965  df-fin 8968  df-fi 9428
This theorem is referenced by:  fipwuni  9443  fisn  9444  fitop  22843  ordtbaslem  23131  ptbasin2  23521  filfi  23802  fmfnfmlem3  23899  ustuqtop2  24186  ldgenpisys  34202
  Copyright terms: Public domain W3C validator