MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem1 Structured version   Visualization version   GIF version

Theorem bezoutlem1 15877
Description: Lemma for bezout 15881. (Contributed by Mario Carneiro, 15-Mar-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
bezoutlem1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem1
StepHypRef Expression
1 bezout.3 . . . 4 (𝜑𝐴 ∈ ℤ)
2 fveq2 6645 . . . . . . 7 (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴))
3 oveq1 7142 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥))
42, 3eqeq12d 2814 . . . . . 6 (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
54rexbidv 3256 . . . . 5 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)))
6 zre 11973 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 1z 12000 . . . . . . . . 9 1 ∈ ℤ
8 ax-1rid 10596 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧)
98eqcomd 2804 . . . . . . . . 9 (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1))
10 oveq2 7143 . . . . . . . . . 10 (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1))
1110rspceeqv 3586 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑧 = (𝑧 · 1)) → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
127, 9, 11sylancr 590 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
13 eqeq1 2802 . . . . . . . . 9 ((abs‘𝑧) = 𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥)))
1413rexbidv 3256 . . . . . . . 8 ((abs‘𝑧) = 𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥)))
1512, 14syl5ibrcom 250 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
16 neg1z 12006 . . . . . . . . 9 -1 ∈ ℤ
17 recn 10616 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
1817mulm1d 11081 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = -𝑧)
19 neg1cn 11739 . . . . . . . . . . 11 -1 ∈ ℂ
20 mulcom 10612 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1))
2119, 17, 20sylancr 590 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = (𝑧 · -1))
2218, 21eqtr3d 2835 . . . . . . . . 9 (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1))
23 oveq2 7143 . . . . . . . . . 10 (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1))
2423rspceeqv 3586 . . . . . . . . 9 ((-1 ∈ ℤ ∧ -𝑧 = (𝑧 · -1)) → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
2516, 22, 24sylancr 590 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
26 eqeq1 2802 . . . . . . . . 9 ((abs‘𝑧) = -𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥)))
2726rexbidv 3256 . . . . . . . 8 ((abs‘𝑧) = -𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥)))
2825, 27syl5ibrcom 250 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
29 absor 14652 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧))
3015, 28, 29mpjaod 857 . . . . . 6 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
316, 30syl 17 . . . . 5 (𝑧 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
325, 31vtoclga 3522 . . . 4 (𝐴 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
331, 32syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
34 bezout.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
3534zcnd 12076 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3635adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐵 ∈ ℂ)
3736mul01d 10828 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐵 · 0) = 0)
3837oveq2d 7151 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0))
391zcnd 12076 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
40 zcn 11974 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
41 mulcl 10610 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
4239, 40, 41syl2an 598 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ)
4342addid1d 10829 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥))
4438, 43eqtrd 2833 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥))
4544eqeq2d 2809 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
46 0z 11980 . . . . . 6 0 ∈ ℤ
47 oveq2 7143 . . . . . . . 8 (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0))
4847oveq2d 7151 . . . . . . 7 (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0)))
4948rspceeqv 3586 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5046, 49mpan 689 . . . . 5 ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5145, 50syl6bir 257 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5251reximdva 3233 . . 3 (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5333, 52mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
54 nnabscl 14677 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
5554ex 416 . . 3 (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
561, 55syl 17 . 2 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
57 eqeq1 2802 . . . . 5 (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
58572rexbidv 3259 . . . 4 (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
59 bezout.1 . . . 4 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
6058, 59elrab2 3631 . . 3 ((abs‘𝐴) ∈ 𝑀 ↔ ((abs‘𝐴) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
6160simplbi2com 506 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀))
6253, 56, 61sylsyld 61 1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  -cneg 10860  cn 11625  cz 11969  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  bezoutlem2  15878  bezoutlem4  15880
  Copyright terms: Public domain W3C validator