MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem1 Structured version   Visualization version   GIF version

Theorem bezoutlem1 16516
Description: Lemma for bezout 16520. (Contributed by Mario Carneiro, 15-Mar-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
bezoutlem1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem1
StepHypRef Expression
1 bezout.3 . . . 4 (𝜑𝐴 ∈ ℤ)
2 fveq2 6861 . . . . . . 7 (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴))
3 oveq1 7397 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥))
42, 3eqeq12d 2746 . . . . . 6 (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
54rexbidv 3158 . . . . 5 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)))
6 zre 12540 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 1z 12570 . . . . . . . . 9 1 ∈ ℤ
8 ax-1rid 11145 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧)
98eqcomd 2736 . . . . . . . . 9 (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1))
10 oveq2 7398 . . . . . . . . . 10 (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1))
1110rspceeqv 3614 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑧 = (𝑧 · 1)) → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
127, 9, 11sylancr 587 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
13 eqeq1 2734 . . . . . . . . 9 ((abs‘𝑧) = 𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥)))
1413rexbidv 3158 . . . . . . . 8 ((abs‘𝑧) = 𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥)))
1512, 14syl5ibrcom 247 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
16 neg1z 12576 . . . . . . . . 9 -1 ∈ ℤ
17 recn 11165 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
1817mulm1d 11637 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = -𝑧)
19 neg1cn 12178 . . . . . . . . . . 11 -1 ∈ ℂ
20 mulcom 11161 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1))
2119, 17, 20sylancr 587 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = (𝑧 · -1))
2218, 21eqtr3d 2767 . . . . . . . . 9 (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1))
23 oveq2 7398 . . . . . . . . . 10 (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1))
2423rspceeqv 3614 . . . . . . . . 9 ((-1 ∈ ℤ ∧ -𝑧 = (𝑧 · -1)) → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
2516, 22, 24sylancr 587 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
26 eqeq1 2734 . . . . . . . . 9 ((abs‘𝑧) = -𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥)))
2726rexbidv 3158 . . . . . . . 8 ((abs‘𝑧) = -𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥)))
2825, 27syl5ibrcom 247 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
29 absor 15273 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧))
3015, 28, 29mpjaod 860 . . . . . 6 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
316, 30syl 17 . . . . 5 (𝑧 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
325, 31vtoclga 3546 . . . 4 (𝐴 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
331, 32syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
34 bezout.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
3534zcnd 12646 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐵 ∈ ℂ)
3736mul01d 11380 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐵 · 0) = 0)
3837oveq2d 7406 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0))
391zcnd 12646 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
40 zcn 12541 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
41 mulcl 11159 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
4239, 40, 41syl2an 596 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ)
4342addridd 11381 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥))
4438, 43eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥))
4544eqeq2d 2741 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
46 0z 12547 . . . . . 6 0 ∈ ℤ
47 oveq2 7398 . . . . . . . 8 (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0))
4847oveq2d 7406 . . . . . . 7 (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0)))
4948rspceeqv 3614 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5046, 49mpan 690 . . . . 5 ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5145, 50biimtrrdi 254 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5251reximdva 3147 . . 3 (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5333, 52mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
54 nnabscl 15299 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
5554ex 412 . . 3 (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
561, 55syl 17 . 2 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
57 eqeq1 2734 . . . . 5 (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
58572rexbidv 3203 . . . 4 (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
59 bezout.1 . . . 4 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
6058, 59elrab2 3665 . . 3 ((abs‘𝐴) ∈ 𝑀 ↔ ((abs‘𝐴) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
6160simplbi2com 502 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀))
6253, 56, 61sylsyld 61 1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  -cneg 11413  cn 12193  cz 12536  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  bezoutlem2  16517  bezoutlem4  16519
  Copyright terms: Public domain W3C validator