Proof of Theorem bezoutlem1
Step | Hyp | Ref
| Expression |
1 | | bezout.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℤ) |
2 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴)) |
3 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥)) |
4 | 2, 3 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥))) |
5 | 4 | rexbidv 3226 |
. . . . 5
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))) |
6 | | zre 12323 |
. . . . . 6
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
7 | | 1z 12350 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
8 | | ax-1rid 10941 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧) |
9 | 8 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1)) |
10 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1)) |
11 | 10 | rspceeqv 3575 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑧 =
(𝑧 · 1)) →
∃𝑥 ∈ ℤ
𝑧 = (𝑧 · 𝑥)) |
12 | 7, 9, 11 | sylancr 587 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
∃𝑥 ∈ ℤ
𝑧 = (𝑧 · 𝑥)) |
13 | | eqeq1 2742 |
. . . . . . . . 9
⊢
((abs‘𝑧) =
𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥))) |
14 | 13 | rexbidv 3226 |
. . . . . . . 8
⊢
((abs‘𝑧) =
𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))) |
15 | 12, 14 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ →
((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))) |
16 | | neg1z 12356 |
. . . . . . . . 9
⊢ -1 ∈
ℤ |
17 | | recn 10961 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) |
18 | 17 | mulm1d 11427 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (-1
· 𝑧) = -𝑧) |
19 | | neg1cn 12087 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
20 | | mulcom 10957 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ 𝑧
∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1)) |
21 | 19, 17, 20 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (-1
· 𝑧) = (𝑧 · -1)) |
22 | 18, 21 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1)) |
23 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1)) |
24 | 23 | rspceeqv 3575 |
. . . . . . . . 9
⊢ ((-1
∈ ℤ ∧ -𝑧 =
(𝑧 · -1)) →
∃𝑥 ∈ ℤ
-𝑧 = (𝑧 · 𝑥)) |
25 | 16, 22, 24 | sylancr 587 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
∃𝑥 ∈ ℤ
-𝑧 = (𝑧 · 𝑥)) |
26 | | eqeq1 2742 |
. . . . . . . . 9
⊢
((abs‘𝑧) =
-𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥))) |
27 | 26 | rexbidv 3226 |
. . . . . . . 8
⊢
((abs‘𝑧) =
-𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))) |
28 | 25, 27 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ →
((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))) |
29 | | absor 15012 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ →
((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧)) |
30 | 15, 28, 29 | mpjaod 857 |
. . . . . 6
⊢ (𝑧 ∈ ℝ →
∃𝑥 ∈ ℤ
(abs‘𝑧) = (𝑧 · 𝑥)) |
31 | 6, 30 | syl 17 |
. . . . 5
⊢ (𝑧 ∈ ℤ →
∃𝑥 ∈ ℤ
(abs‘𝑧) = (𝑧 · 𝑥)) |
32 | 5, 31 | vtoclga 3513 |
. . . 4
⊢ (𝐴 ∈ ℤ →
∃𝑥 ∈ ℤ
(abs‘𝐴) = (𝐴 · 𝑥)) |
33 | 1, 32 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)) |
34 | | bezout.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℤ) |
35 | 34 | zcnd 12427 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐵 ∈ ℂ) |
37 | 36 | mul01d 11174 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐵 · 0) = 0) |
38 | 37 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0)) |
39 | 1 | zcnd 12427 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
40 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
41 | | mulcl 10955 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ) |
42 | 39, 40, 41 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ) |
43 | 42 | addid1d 11175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥)) |
44 | 38, 43 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥)) |
45 | 44 | eqeq2d 2749 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥))) |
46 | | 0z 12330 |
. . . . . 6
⊢ 0 ∈
ℤ |
47 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0)) |
48 | 47 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0))) |
49 | 48 | rspceeqv 3575 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
50 | 46, 49 | mpan 687 |
. . . . 5
⊢
((abs‘𝐴) =
((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
51 | 45, 50 | syl6bir 253 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
52 | 51 | reximdva 3203 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
53 | 33, 52 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
54 | | nnabscl 15037 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℕ) |
55 | 54 | ex 413 |
. . 3
⊢ (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈
ℕ)) |
56 | 1, 55 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ)) |
57 | | eqeq1 2742 |
. . . . 5
⊢ (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
58 | 57 | 2rexbidv 3229 |
. . . 4
⊢ (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
59 | | bezout.1 |
. . . 4
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} |
60 | 58, 59 | elrab2 3627 |
. . 3
⊢
((abs‘𝐴)
∈ 𝑀 ↔
((abs‘𝐴) ∈
ℕ ∧ ∃𝑥
∈ ℤ ∃𝑦
∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
61 | 60 | simplbi2com 503 |
. 2
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ (abs‘𝐴) =
((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀)) |
62 | 53, 56, 61 | sylsyld 61 |
1
⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) |