MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem1 Structured version   Visualization version   GIF version

Theorem bezoutlem1 16576
Description: Lemma for bezout 16580. (Contributed by Mario Carneiro, 15-Mar-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
bezoutlem1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem1
StepHypRef Expression
1 bezout.3 . . . 4 (𝜑𝐴 ∈ ℤ)
2 fveq2 6906 . . . . . . 7 (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴))
3 oveq1 7438 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥))
42, 3eqeq12d 2753 . . . . . 6 (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
54rexbidv 3179 . . . . 5 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)))
6 zre 12617 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 1z 12647 . . . . . . . . 9 1 ∈ ℤ
8 ax-1rid 11225 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧)
98eqcomd 2743 . . . . . . . . 9 (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1))
10 oveq2 7439 . . . . . . . . . 10 (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1))
1110rspceeqv 3645 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑧 = (𝑧 · 1)) → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
127, 9, 11sylancr 587 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
13 eqeq1 2741 . . . . . . . . 9 ((abs‘𝑧) = 𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥)))
1413rexbidv 3179 . . . . . . . 8 ((abs‘𝑧) = 𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥)))
1512, 14syl5ibrcom 247 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
16 neg1z 12653 . . . . . . . . 9 -1 ∈ ℤ
17 recn 11245 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
1817mulm1d 11715 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = -𝑧)
19 neg1cn 12380 . . . . . . . . . . 11 -1 ∈ ℂ
20 mulcom 11241 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1))
2119, 17, 20sylancr 587 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = (𝑧 · -1))
2218, 21eqtr3d 2779 . . . . . . . . 9 (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1))
23 oveq2 7439 . . . . . . . . . 10 (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1))
2423rspceeqv 3645 . . . . . . . . 9 ((-1 ∈ ℤ ∧ -𝑧 = (𝑧 · -1)) → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
2516, 22, 24sylancr 587 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
26 eqeq1 2741 . . . . . . . . 9 ((abs‘𝑧) = -𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥)))
2726rexbidv 3179 . . . . . . . 8 ((abs‘𝑧) = -𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥)))
2825, 27syl5ibrcom 247 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
29 absor 15339 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧))
3015, 28, 29mpjaod 861 . . . . . 6 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
316, 30syl 17 . . . . 5 (𝑧 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
325, 31vtoclga 3577 . . . 4 (𝐴 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
331, 32syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
34 bezout.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
3534zcnd 12723 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐵 ∈ ℂ)
3736mul01d 11460 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐵 · 0) = 0)
3837oveq2d 7447 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0))
391zcnd 12723 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
40 zcn 12618 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
41 mulcl 11239 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
4239, 40, 41syl2an 596 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ)
4342addridd 11461 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥))
4438, 43eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥))
4544eqeq2d 2748 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
46 0z 12624 . . . . . 6 0 ∈ ℤ
47 oveq2 7439 . . . . . . . 8 (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0))
4847oveq2d 7447 . . . . . . 7 (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0)))
4948rspceeqv 3645 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5046, 49mpan 690 . . . . 5 ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5145, 50biimtrrdi 254 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5251reximdva 3168 . . 3 (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5333, 52mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
54 nnabscl 15364 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
5554ex 412 . . 3 (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
561, 55syl 17 . 2 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
57 eqeq1 2741 . . . . 5 (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
58572rexbidv 3222 . . . 4 (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
59 bezout.1 . . . 4 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
6058, 59elrab2 3695 . . 3 ((abs‘𝐴) ∈ 𝑀 ↔ ((abs‘𝐴) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
6160simplbi2com 502 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀))
6253, 56, 61sylsyld 61 1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  -cneg 11493  cn 12266  cz 12613  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  bezoutlem2  16577  bezoutlem4  16579
  Copyright terms: Public domain W3C validator