MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw1 Structured version   Visualization version   GIF version

Theorem cshw1 14387
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshw1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem cshw1
StepHypRef Expression
1 ral0 4424 . . . 4 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
2 oveq2 7221 . . . . . 6 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
3 fzo0 13266 . . . . . 6 (0..^0) = ∅
42, 3eqtrdi 2794 . . . . 5 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
54raleqdv 3325 . . . 4 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
61, 5mpbiri 261 . . 3 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
76a1d 25 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8 simprl 771 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 𝑊 ∈ Word 𝑉)
9 lencl 14088 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
10 1nn0 12106 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1110a1i 11 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 ∈ ℕ0)
12 df-ne 2941 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 0 ↔ ¬ (♯‘𝑊) = 0)
13 elnnne0 12104 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
1413simplbi2com 506 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1512, 14sylbir 238 . . . . . . . . . . . . . . 15 (¬ (♯‘𝑊) = 0 → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1615adantr 484 . . . . . . . . . . . . . 14 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1716impcom 411 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (♯‘𝑊) ∈ ℕ)
18 neqne 2948 . . . . . . . . . . . . . . 15 (¬ (♯‘𝑊) = 1 → (♯‘𝑊) ≠ 1)
1918ad2antll 729 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (♯‘𝑊) ≠ 1)
20 nngt1ne1 11859 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → (1 < (♯‘𝑊) ↔ (♯‘𝑊) ≠ 1))
2117, 20syl 17 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (1 < (♯‘𝑊) ↔ (♯‘𝑊) ≠ 1))
2219, 21mpbird 260 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 < (♯‘𝑊))
23 elfzo0 13283 . . . . . . . . . . . . 13 (1 ∈ (0..^(♯‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 1 < (♯‘𝑊)))
2411, 17, 22, 23syl3anbrc 1345 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 ∈ (0..^(♯‘𝑊)))
2524ex 416 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
269, 25syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
2726adantr 484 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
2827impcom 411 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 1 ∈ (0..^(♯‘𝑊)))
29 simprr 773 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (𝑊 cyclShift 1) = 𝑊)
30 lbfzo0 13282 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
3130, 13sylbbr 239 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
3231ex 416 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → 0 ∈ (0..^(♯‘𝑊))))
3312, 32syl5bir 246 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
349, 33syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
3534adantr 484 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
3635com12 32 . . . . . . . . . 10 (¬ (♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(♯‘𝑊))))
3736adantr 484 . . . . . . . . 9 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(♯‘𝑊))))
3837imp 410 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 0 ∈ (0..^(♯‘𝑊)))
39 elfzoelz 13243 . . . . . . . . . 10 (1 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℤ)
40 cshweqrep 14386 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4139, 40sylan2 596 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4241imp 410 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) ∧ ((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊)))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
438, 28, 29, 38, 42syl22anc 839 . . . . . . 7 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
44 0nn0 12105 . . . . . . . . 9 0 ∈ ℕ0
45 fzossnn0 13273 . . . . . . . . 9 (0 ∈ ℕ0 → (0..^(♯‘𝑊)) ⊆ ℕ0)
46 ssralv 3967 . . . . . . . . 9 ((0..^(♯‘𝑊)) ⊆ ℕ0 → (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4744, 45, 46mp2b 10 . . . . . . . 8 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
48 eqcom 2744 . . . . . . . . . 10 ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) ↔ (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0))
49 elfzoelz 13243 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
50 zre 12180 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
51 ax-1rid 10799 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (𝑖 · 1) = 𝑖)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (𝑖 · 1) = 𝑖)
5352oveq2d 7229 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = (0 + 𝑖))
54 zcn 12181 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
5554addid2d 11033 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + 𝑖) = 𝑖)
5653, 55eqtrd 2777 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = 𝑖)
5749, 56syl 17 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(♯‘𝑊)) → (0 + (𝑖 · 1)) = 𝑖)
5857oveq1d 7228 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(♯‘𝑊)) → ((0 + (𝑖 · 1)) mod (♯‘𝑊)) = (𝑖 mod (♯‘𝑊)))
59 zmodidfzoimp 13474 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(♯‘𝑊)) → (𝑖 mod (♯‘𝑊)) = 𝑖)
6058, 59eqtrd 2777 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝑊)) → ((0 + (𝑖 · 1)) mod (♯‘𝑊)) = 𝑖)
6160fveqeq2d 6725 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0) ↔ (𝑊𝑖) = (𝑊‘0)))
6261biimpd 232 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0) → (𝑊𝑖) = (𝑊‘0)))
6348, 62syl5bi 245 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
6463ralimia 3081 . . . . . . . 8 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6547, 64syl 17 . . . . . . 7 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6643, 65syl 17 . . . . . 6 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6766ex 416 . . . . 5 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6867impancom 455 . . . 4 ((¬ (♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (¬ (♯‘𝑊) = 1 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
69 eqid 2737 . . . . . 6 (𝑊‘0) = (𝑊‘0)
70 c0ex 10827 . . . . . . 7 0 ∈ V
71 fveqeq2 6726 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0)))
7270, 71ralsn 4597 . . . . . 6 (∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0))
7369, 72mpbir 234 . . . . 5 𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)
74 oveq2 7221 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
75 fzo01 13324 . . . . . . 7 (0..^1) = {0}
7674, 75eqtrdi 2794 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
7776raleqdv 3325 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)))
7873, 77mpbiri 261 . . . 4 ((♯‘𝑊) = 1 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
7968, 78pm2.61d2 184 . . 3 ((¬ (♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
8079ex 416 . 2 (¬ (♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
817, 80pm2.61i 185 1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wss 3866  c0 4237  {csn 4541   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cn 11830  0cn0 12090  cz 12176  ..^cfzo 13238   mod cmo 13442  chash 13896  Word cword 14069   cyclShift ccsh 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-hash 13897  df-word 14070  df-concat 14126  df-substr 14206  df-pfx 14236  df-csh 14354
This theorem is referenced by:  cshw1repsw  14388
  Copyright terms: Public domain W3C validator