MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw1 Structured version   Visualization version   GIF version

Theorem cshw1 14845
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshw1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem cshw1
StepHypRef Expression
1 ral0 4493 . . . 4 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
2 oveq2 7418 . . . . . 6 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
3 fzo0 13705 . . . . . 6 (0..^0) = ∅
42, 3eqtrdi 2787 . . . . 5 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
54raleqdv 3309 . . . 4 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
61, 5mpbiri 258 . . 3 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
76a1d 25 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8 simprl 770 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 𝑊 ∈ Word 𝑉)
9 lencl 14556 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
10 1nn0 12522 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1110a1i 11 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 ∈ ℕ0)
12 df-ne 2934 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 0 ↔ ¬ (♯‘𝑊) = 0)
13 elnnne0 12520 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
1413simplbi2com 502 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1512, 14sylbir 235 . . . . . . . . . . . . . . 15 (¬ (♯‘𝑊) = 0 → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1615adantr 480 . . . . . . . . . . . . . 14 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1716impcom 407 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (♯‘𝑊) ∈ ℕ)
18 neqne 2941 . . . . . . . . . . . . . . 15 (¬ (♯‘𝑊) = 1 → (♯‘𝑊) ≠ 1)
1918ad2antll 729 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (♯‘𝑊) ≠ 1)
20 nngt1ne1 12274 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → (1 < (♯‘𝑊) ↔ (♯‘𝑊) ≠ 1))
2117, 20syl 17 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (1 < (♯‘𝑊) ↔ (♯‘𝑊) ≠ 1))
2219, 21mpbird 257 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 < (♯‘𝑊))
23 elfzo0 13722 . . . . . . . . . . . . 13 (1 ∈ (0..^(♯‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 1 < (♯‘𝑊)))
2411, 17, 22, 23syl3anbrc 1344 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 ∈ (0..^(♯‘𝑊)))
2524ex 412 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
269, 25syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
2726adantr 480 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
2827impcom 407 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 1 ∈ (0..^(♯‘𝑊)))
29 simprr 772 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (𝑊 cyclShift 1) = 𝑊)
30 lbfzo0 13721 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
3130, 13sylbbr 236 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
3231ex 412 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → 0 ∈ (0..^(♯‘𝑊))))
3312, 32biimtrrid 243 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
349, 33syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
3534adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
3635com12 32 . . . . . . . . . 10 (¬ (♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(♯‘𝑊))))
3736adantr 480 . . . . . . . . 9 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(♯‘𝑊))))
3837imp 406 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 0 ∈ (0..^(♯‘𝑊)))
39 elfzoelz 13681 . . . . . . . . . 10 (1 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℤ)
40 cshweqrep 14844 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4139, 40sylan2 593 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4241imp 406 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) ∧ ((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊)))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
438, 28, 29, 38, 42syl22anc 838 . . . . . . 7 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
44 0nn0 12521 . . . . . . . . 9 0 ∈ ℕ0
45 fzossnn0 13712 . . . . . . . . 9 (0 ∈ ℕ0 → (0..^(♯‘𝑊)) ⊆ ℕ0)
46 ssralv 4032 . . . . . . . . 9 ((0..^(♯‘𝑊)) ⊆ ℕ0 → (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4744, 45, 46mp2b 10 . . . . . . . 8 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
48 eqcom 2743 . . . . . . . . . 10 ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) ↔ (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0))
49 elfzoelz 13681 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
50 zre 12597 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
51 ax-1rid 11204 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (𝑖 · 1) = 𝑖)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (𝑖 · 1) = 𝑖)
5352oveq2d 7426 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = (0 + 𝑖))
54 zcn 12598 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
5554addlidd 11441 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + 𝑖) = 𝑖)
5653, 55eqtrd 2771 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = 𝑖)
5749, 56syl 17 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(♯‘𝑊)) → (0 + (𝑖 · 1)) = 𝑖)
5857oveq1d 7425 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(♯‘𝑊)) → ((0 + (𝑖 · 1)) mod (♯‘𝑊)) = (𝑖 mod (♯‘𝑊)))
59 zmodidfzoimp 13923 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(♯‘𝑊)) → (𝑖 mod (♯‘𝑊)) = 𝑖)
6058, 59eqtrd 2771 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝑊)) → ((0 + (𝑖 · 1)) mod (♯‘𝑊)) = 𝑖)
6160fveqeq2d 6889 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0) ↔ (𝑊𝑖) = (𝑊‘0)))
6261biimpd 229 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0) → (𝑊𝑖) = (𝑊‘0)))
6348, 62biimtrid 242 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
6463ralimia 3071 . . . . . . . 8 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6547, 64syl 17 . . . . . . 7 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6643, 65syl 17 . . . . . 6 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6766ex 412 . . . . 5 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6867impancom 451 . . . 4 ((¬ (♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (¬ (♯‘𝑊) = 1 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
69 eqid 2736 . . . . . 6 (𝑊‘0) = (𝑊‘0)
70 c0ex 11234 . . . . . . 7 0 ∈ V
71 fveqeq2 6890 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0)))
7270, 71ralsn 4662 . . . . . 6 (∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0))
7369, 72mpbir 231 . . . . 5 𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)
74 oveq2 7418 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
75 fzo01 13768 . . . . . . 7 (0..^1) = {0}
7674, 75eqtrdi 2787 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
7776raleqdv 3309 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)))
7873, 77mpbiri 258 . . . 4 ((♯‘𝑊) = 1 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
7968, 78pm2.61d2 181 . . 3 ((¬ (♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
8079ex 412 . 2 (¬ (♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
817, 80pm2.61i 182 1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cn 12245  0cn0 12506  cz 12593  ..^cfzo 13676   mod cmo 13891  chash 14353  Word cword 14536   cyclShift ccsh 14811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14354  df-word 14537  df-concat 14594  df-substr 14664  df-pfx 14694  df-csh 14812
This theorem is referenced by:  cshw1repsw  14846
  Copyright terms: Public domain W3C validator