MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw1 Structured version   Visualization version   GIF version

Theorem cshw1 14463
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshw1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem cshw1
StepHypRef Expression
1 ral0 4440 . . . 4 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
2 oveq2 7263 . . . . . 6 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
3 fzo0 13339 . . . . . 6 (0..^0) = ∅
42, 3eqtrdi 2795 . . . . 5 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
54raleqdv 3339 . . . 4 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
61, 5mpbiri 257 . . 3 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
76a1d 25 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8 simprl 767 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 𝑊 ∈ Word 𝑉)
9 lencl 14164 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
10 1nn0 12179 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1110a1i 11 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 ∈ ℕ0)
12 df-ne 2943 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 0 ↔ ¬ (♯‘𝑊) = 0)
13 elnnne0 12177 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
1413simplbi2com 502 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1512, 14sylbir 234 . . . . . . . . . . . . . . 15 (¬ (♯‘𝑊) = 0 → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1615adantr 480 . . . . . . . . . . . . . 14 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℕ))
1716impcom 407 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (♯‘𝑊) ∈ ℕ)
18 neqne 2950 . . . . . . . . . . . . . . 15 (¬ (♯‘𝑊) = 1 → (♯‘𝑊) ≠ 1)
1918ad2antll 725 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (♯‘𝑊) ≠ 1)
20 nngt1ne1 11932 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → (1 < (♯‘𝑊) ↔ (♯‘𝑊) ≠ 1))
2117, 20syl 17 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → (1 < (♯‘𝑊) ↔ (♯‘𝑊) ≠ 1))
2219, 21mpbird 256 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 < (♯‘𝑊))
23 elfzo0 13356 . . . . . . . . . . . . 13 (1 ∈ (0..^(♯‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 1 < (♯‘𝑊)))
2411, 17, 22, 23syl3anbrc 1341 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ (¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1)) → 1 ∈ (0..^(♯‘𝑊)))
2524ex 412 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
269, 25syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
2726adantr 480 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → 1 ∈ (0..^(♯‘𝑊))))
2827impcom 407 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 1 ∈ (0..^(♯‘𝑊)))
29 simprr 769 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (𝑊 cyclShift 1) = 𝑊)
30 lbfzo0 13355 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
3130, 13sylbbr 235 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
3231ex 412 . . . . . . . . . . . . . 14 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → 0 ∈ (0..^(♯‘𝑊))))
3312, 32syl5bir 242 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ0 → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
349, 33syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
3534adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → (¬ (♯‘𝑊) = 0 → 0 ∈ (0..^(♯‘𝑊))))
3635com12 32 . . . . . . . . . 10 (¬ (♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(♯‘𝑊))))
3736adantr 480 . . . . . . . . 9 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(♯‘𝑊))))
3837imp 406 . . . . . . . 8 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 0 ∈ (0..^(♯‘𝑊)))
39 elfzoelz 13316 . . . . . . . . . 10 (1 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℤ)
40 cshweqrep 14462 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4139, 40sylan2 592 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4241imp 406 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) ∧ ((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(♯‘𝑊)))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
438, 28, 29, 38, 42syl22anc 835 . . . . . . 7 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
44 0nn0 12178 . . . . . . . . 9 0 ∈ ℕ0
45 fzossnn0 13346 . . . . . . . . 9 (0 ∈ ℕ0 → (0..^(♯‘𝑊)) ⊆ ℕ0)
46 ssralv 3983 . . . . . . . . 9 ((0..^(♯‘𝑊)) ⊆ ℕ0 → (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊)))))
4744, 45, 46mp2b 10 . . . . . . . 8 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))))
48 eqcom 2745 . . . . . . . . . 10 ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) ↔ (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0))
49 elfzoelz 13316 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
50 zre 12253 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
51 ax-1rid 10872 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℝ → (𝑖 · 1) = 𝑖)
5250, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (𝑖 · 1) = 𝑖)
5352oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = (0 + 𝑖))
54 zcn 12254 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
5554addid2d 11106 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + 𝑖) = 𝑖)
5653, 55eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = 𝑖)
5749, 56syl 17 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(♯‘𝑊)) → (0 + (𝑖 · 1)) = 𝑖)
5857oveq1d 7270 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(♯‘𝑊)) → ((0 + (𝑖 · 1)) mod (♯‘𝑊)) = (𝑖 mod (♯‘𝑊)))
59 zmodidfzoimp 13549 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(♯‘𝑊)) → (𝑖 mod (♯‘𝑊)) = 𝑖)
6058, 59eqtrd 2778 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝑊)) → ((0 + (𝑖 · 1)) mod (♯‘𝑊)) = 𝑖)
6160fveqeq2d 6764 . . . . . . . . . . 11 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0) ↔ (𝑊𝑖) = (𝑊‘0)))
6261biimpd 228 . . . . . . . . . 10 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) = (𝑊‘0) → (𝑊𝑖) = (𝑊‘0)))
6348, 62syl5bi 241 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) → ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
6463ralimia 3084 . . . . . . . 8 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6547, 64syl 17 . . . . . . 7 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6643, 65syl 17 . . . . . 6 (((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
6766ex 412 . . . . 5 ((¬ (♯‘𝑊) = 0 ∧ ¬ (♯‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6867impancom 451 . . . 4 ((¬ (♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (¬ (♯‘𝑊) = 1 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
69 eqid 2738 . . . . . 6 (𝑊‘0) = (𝑊‘0)
70 c0ex 10900 . . . . . . 7 0 ∈ V
71 fveqeq2 6765 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0)))
7270, 71ralsn 4614 . . . . . 6 (∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0))
7369, 72mpbir 230 . . . . 5 𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)
74 oveq2 7263 . . . . . . 7 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = (0..^1))
75 fzo01 13397 . . . . . . 7 (0..^1) = {0}
7674, 75eqtrdi 2795 . . . . . 6 ((♯‘𝑊) = 1 → (0..^(♯‘𝑊)) = {0})
7776raleqdv 3339 . . . . 5 ((♯‘𝑊) = 1 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)))
7873, 77mpbiri 257 . . . 4 ((♯‘𝑊) = 1 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
7968, 78pm2.61d2 181 . . 3 ((¬ (♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
8079ex 412 . 2 (¬ (♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
817, 80pm2.61i 182 1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cn 11903  0cn0 12163  cz 12249  ..^cfzo 13311   mod cmo 13517  chash 13972  Word cword 14145   cyclShift ccsh 14429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430
This theorem is referenced by:  cshw1repsw  14464
  Copyright terms: Public domain W3C validator