MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem3 Structured version   Visualization version   GIF version

Theorem bezoutlem3 15879
Description: Lemma for bezout 15881. (Contributed by Mario Carneiro, 22-Feb-2014.) ( Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem3 (𝜑 → (𝐶𝑀𝐺𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hint:   𝑀(𝑧)

Proof of Theorem bezoutlem3
Dummy variables 𝑡 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . . 10 ((𝜑𝐶𝑀) → 𝐶𝑀)
2 eqeq1 2802 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
322rexbidv 3259 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠))
54oveq1d 7150 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑠) + (𝐵 · 𝑦)))
65eqeq2d 2809 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑦))))
7 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡))
87oveq2d 7151 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → ((𝐴 · 𝑠) + (𝐵 · 𝑦)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
98eqeq2d 2809 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑦)) ↔ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
106, 9cbvrex2vw 3409 . . . . . . . . . . . 12 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
113, 10syl6bb 290 . . . . . . . . . . 11 (𝑧 = 𝐶 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
12 bezout.1 . . . . . . . . . . 11 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
1311, 12elrab2 3631 . . . . . . . . . 10 (𝐶𝑀 ↔ (𝐶 ∈ ℕ ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
141, 13sylib 221 . . . . . . . . 9 ((𝜑𝐶𝑀) → (𝐶 ∈ ℕ ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
1514simpld 498 . . . . . . . 8 ((𝜑𝐶𝑀) → 𝐶 ∈ ℕ)
1615nnred 11640 . . . . . . 7 ((𝜑𝐶𝑀) → 𝐶 ∈ ℝ)
17 bezout.3 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
18 bezout.4 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
19 bezout.2 . . . . . . . . . . . 12 𝐺 = inf(𝑀, ℝ, < )
20 bezout.5 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2112, 17, 18, 19, 20bezoutlem2 15878 . . . . . . . . . . 11 (𝜑𝐺𝑀)
22 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
2322oveq1d 7150 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
2423eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
25 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
2625oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2726eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2824, 27cbvrex2vw 3409 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
29 eqeq1 2802 . . . . . . . . . . . . . 14 (𝑧 = 𝐺 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
30292rexbidv 3259 . . . . . . . . . . . . 13 (𝑧 = 𝐺 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3128, 30syl5bb 286 . . . . . . . . . . . 12 (𝑧 = 𝐺 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3231, 12elrab2 3631 . . . . . . . . . . 11 (𝐺𝑀 ↔ (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3321, 32sylib 221 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3433simpld 498 . . . . . . . . 9 (𝜑𝐺 ∈ ℕ)
3534nnrpd 12417 . . . . . . . 8 (𝜑𝐺 ∈ ℝ+)
3635adantr 484 . . . . . . 7 ((𝜑𝐶𝑀) → 𝐺 ∈ ℝ+)
37 modlt 13243 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝐶 mod 𝐺) < 𝐺)
3816, 36, 37syl2anc 587 . . . . . 6 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) < 𝐺)
3915nnzd 12074 . . . . . . . . 9 ((𝜑𝐶𝑀) → 𝐶 ∈ ℤ)
4034adantr 484 . . . . . . . . 9 ((𝜑𝐶𝑀) → 𝐺 ∈ ℕ)
4139, 40zmodcld 13255 . . . . . . . 8 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) ∈ ℕ0)
4241nn0red 11944 . . . . . . 7 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) ∈ ℝ)
4334nnred 11640 . . . . . . . 8 (𝜑𝐺 ∈ ℝ)
4443adantr 484 . . . . . . 7 ((𝜑𝐶𝑀) → 𝐺 ∈ ℝ)
4542, 44ltnled 10776 . . . . . 6 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝐶 mod 𝐺)))
4638, 45mpbid 235 . . . . 5 ((𝜑𝐶𝑀) → ¬ 𝐺 ≤ (𝐶 mod 𝐺))
4714simprd 499 . . . . . . . . 9 ((𝜑𝐶𝑀) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
4833simprd 499 . . . . . . . . . . . . 13 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
4948ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
50 simprll 778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑠 ∈ ℤ)
51 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑢 ∈ ℤ)
5216, 40nndivred 11679 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶𝑀) → (𝐶 / 𝐺) ∈ ℝ)
5352flcld 13163 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶𝑀) → (⌊‘(𝐶 / 𝐺)) ∈ ℤ)
5453adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (⌊‘(𝐶 / 𝐺)) ∈ ℤ)
5551, 54zmulcld 12081 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑢 · (⌊‘(𝐶 / 𝐺))) ∈ ℤ)
5650, 55zsubcld 12080 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ)
57 simprlr 779 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑡 ∈ ℤ)
58 simprrr 781 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑣 ∈ ℤ)
5958, 54zmulcld 12081 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑣 · (⌊‘(𝐶 / 𝐺))) ∈ ℤ)
6057, 59zsubcld 12080 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ)
6117zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℂ)
6261ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝐴 ∈ ℂ)
6350zcnd 12076 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑠 ∈ ℂ)
6462, 63mulcld 10650 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · 𝑠) ∈ ℂ)
6518zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℂ)
6665ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝐵 ∈ ℂ)
6757zcnd 12076 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑡 ∈ ℂ)
6866, 67mulcld 10650 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · 𝑡) ∈ ℂ)
6955zcnd 12076 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑢 · (⌊‘(𝐶 / 𝐺))) ∈ ℂ)
7062, 69mulcld 10650 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) ∈ ℂ)
7159zcnd 12076 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑣 · (⌊‘(𝐶 / 𝐺))) ∈ ℂ)
7266, 71mulcld 10650 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))) ∈ ℂ)
7364, 68, 70, 72addsub4d 11033 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))) = (((𝐴 · 𝑠) − (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺))))) + ((𝐵 · 𝑡) − (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
7451zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑢 ∈ ℂ)
7562, 74mulcld 10650 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · 𝑢) ∈ ℂ)
7653zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶𝑀) → (⌊‘(𝐶 / 𝐺)) ∈ ℂ)
7776adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (⌊‘(𝐶 / 𝐺)) ∈ ℂ)
7858zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑣 ∈ ℂ)
7966, 78mulcld 10650 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · 𝑣) ∈ ℂ)
8062, 74, 77mulassd 10653 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐴 · 𝑢) · (⌊‘(𝐶 / 𝐺))) = (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))))
8166, 78, 77mulassd 10653 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐵 · 𝑣) · (⌊‘(𝐶 / 𝐺))) = (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))
8280, 81oveq12d 7153 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑢) · (⌊‘(𝐶 / 𝐺))) + ((𝐵 · 𝑣) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺))))))
8375, 77, 79, 82joinlmuladdmuld 10657 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺))) = ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺))))))
8483oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
8562, 63, 69subdid 11085 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) = ((𝐴 · 𝑠) − (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺))))))
8666, 67, 71subdid 11085 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))) = ((𝐵 · 𝑡) − (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺))))))
8785, 86oveq12d 7153 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))))) = (((𝐴 · 𝑠) − (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺))))) + ((𝐵 · 𝑡) − (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
8873, 84, 873eqtr4d 2843 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
89 oveq2 7143 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) → (𝐴 · 𝑥) = (𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))))
9089oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦)))
9190eqeq2d 2809 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) → ((((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦))))
92 oveq2 7143 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) → (𝐵 · 𝑦) = (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))))
9392oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) → ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦)) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
9493eqeq2d 2809 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) → ((((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦)) ↔ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))))))
9591, 94rspc2ev 3583 . . . . . . . . . . . . . . . . 17 (((𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ ∧ (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ ∧ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
9656, 60, 88, 95syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
97 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐺 · (⌊‘(𝐶 / 𝐺))) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺))))
98 oveq12 7144 . . . . . . . . . . . . . . . . . . 19 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ (𝐺 · (⌊‘(𝐶 / 𝐺))) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) → (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))))
9997, 98sylan2 595 . . . . . . . . . . . . . . . . . 18 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))))
10099eqeq1d 2800 . . . . . . . . . . . . . . . . 17 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ((𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1011002rexbidv 3259 . . . . . . . . . . . . . . . 16 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
10296, 101syl5ibrcom 250 . . . . . . . . . . . . . . 15 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
103102expcomd 420 . . . . . . . . . . . . . 14 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
104103expr 460 . . . . . . . . . . . . 13 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
105104rexlimdvv 3252 . . . . . . . . . . . 12 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
10649, 105mpd 15 . . . . . . . . . . 11 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
107106ex 416 . . . . . . . . . 10 ((𝜑𝐶𝑀) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
108107rexlimdvv 3252 . . . . . . . . 9 ((𝜑𝐶𝑀) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
10947, 108mpd 15 . . . . . . . 8 ((𝜑𝐶𝑀) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
110 modval 13234 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝐶 mod 𝐺) = (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))))
11116, 36, 110syl2anc 587 . . . . . . . . . . 11 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) = (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))))
112111eqcomd 2804 . . . . . . . . . 10 ((𝜑𝐶𝑀) → (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = (𝐶 mod 𝐺))
113112eqeq1d 2800 . . . . . . . . 9 ((𝜑𝐶𝑀) → ((𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1141132rexbidv 3259 . . . . . . . 8 ((𝜑𝐶𝑀) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
115109, 114mpbid 235 . . . . . . 7 ((𝜑𝐶𝑀) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
116 eqeq1 2802 . . . . . . . . . 10 (𝑧 = (𝐶 mod 𝐺) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1171162rexbidv 3259 . . . . . . . . 9 (𝑧 = (𝐶 mod 𝐺) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
118117, 12elrab2 3631 . . . . . . . 8 ((𝐶 mod 𝐺) ∈ 𝑀 ↔ ((𝐶 mod 𝐺) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
119118simplbi2com 506 . . . . . . 7 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝐶 mod 𝐺) ∈ ℕ → (𝐶 mod 𝐺) ∈ 𝑀))
120115, 119syl 17 . . . . . 6 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) ∈ ℕ → (𝐶 mod 𝐺) ∈ 𝑀))
12112ssrab3 4008 . . . . . . . . 9 𝑀 ⊆ ℕ
122 nnuz 12269 . . . . . . . . 9 ℕ = (ℤ‘1)
123121, 122sseqtri 3951 . . . . . . . 8 𝑀 ⊆ (ℤ‘1)
124 infssuzle 12319 . . . . . . . 8 ((𝑀 ⊆ (ℤ‘1) ∧ (𝐶 mod 𝐺) ∈ 𝑀) → inf(𝑀, ℝ, < ) ≤ (𝐶 mod 𝐺))
125123, 124mpan 689 . . . . . . 7 ((𝐶 mod 𝐺) ∈ 𝑀 → inf(𝑀, ℝ, < ) ≤ (𝐶 mod 𝐺))
12619, 125eqbrtrid 5065 . . . . . 6 ((𝐶 mod 𝐺) ∈ 𝑀𝐺 ≤ (𝐶 mod 𝐺))
127120, 126syl6 35 . . . . 5 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) ∈ ℕ → 𝐺 ≤ (𝐶 mod 𝐺)))
12846, 127mtod 201 . . . 4 ((𝜑𝐶𝑀) → ¬ (𝐶 mod 𝐺) ∈ ℕ)
129 elnn0 11887 . . . . . 6 ((𝐶 mod 𝐺) ∈ ℕ0 ↔ ((𝐶 mod 𝐺) ∈ ℕ ∨ (𝐶 mod 𝐺) = 0))
13041, 129sylib 221 . . . . 5 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) ∈ ℕ ∨ (𝐶 mod 𝐺) = 0))
131130ord 861 . . . 4 ((𝜑𝐶𝑀) → (¬ (𝐶 mod 𝐺) ∈ ℕ → (𝐶 mod 𝐺) = 0))
132128, 131mpd 15 . . 3 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) = 0)
133 dvdsval3 15603 . . . 4 ((𝐺 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝐺𝐶 ↔ (𝐶 mod 𝐺) = 0))
13440, 39, 133syl2anc 587 . . 3 ((𝜑𝐶𝑀) → (𝐺𝐶 ↔ (𝐶 mod 𝐺) = 0))
135132, 134mpbird 260 . 2 ((𝜑𝐶𝑀) → 𝐺𝐶)
136135ex 416 1 (𝜑 → (𝐶𝑀𝐺𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  infcinf 8889  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cuz 12231  +crp 12377  cfl 13155   mod cmo 13232  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600
This theorem is referenced by:  bezoutlem4  15880
  Copyright terms: Public domain W3C validator