MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem3 Structured version   Visualization version   GIF version

Theorem bezoutlem3 16511
Description: Lemma for bezout 16513. (Contributed by Mario Carneiro, 22-Feb-2014.) ( Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem3 (𝜑 → (𝐶𝑀𝐺𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hint:   𝑀(𝑧)

Proof of Theorem bezoutlem3
Dummy variables 𝑡 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 ((𝜑𝐶𝑀) → 𝐶𝑀)
2 eqeq1 2733 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
322rexbidv 3202 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠))
54oveq1d 7402 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑠) + (𝐵 · 𝑦)))
65eqeq2d 2740 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑦))))
7 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡))
87oveq2d 7403 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → ((𝐴 · 𝑠) + (𝐵 · 𝑦)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
98eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑦)) ↔ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
106, 9cbvrex2vw 3220 . . . . . . . . . . . 12 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐶 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
113, 10bitrdi 287 . . . . . . . . . . 11 (𝑧 = 𝐶 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
12 bezout.1 . . . . . . . . . . 11 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
1311, 12elrab2 3662 . . . . . . . . . 10 (𝐶𝑀 ↔ (𝐶 ∈ ℕ ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
141, 13sylib 218 . . . . . . . . 9 ((𝜑𝐶𝑀) → (𝐶 ∈ ℕ ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
1514simpld 494 . . . . . . . 8 ((𝜑𝐶𝑀) → 𝐶 ∈ ℕ)
1615nnred 12201 . . . . . . 7 ((𝜑𝐶𝑀) → 𝐶 ∈ ℝ)
17 bezout.3 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
18 bezout.4 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
19 bezout.2 . . . . . . . . . . . 12 𝐺 = inf(𝑀, ℝ, < )
20 bezout.5 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2112, 17, 18, 19, 20bezoutlem2 16510 . . . . . . . . . . 11 (𝜑𝐺𝑀)
22 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
2322oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
2423eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
25 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
2625oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2726eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2824, 27cbvrex2vw 3220 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
29 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑧 = 𝐺 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
30292rexbidv 3202 . . . . . . . . . . . . 13 (𝑧 = 𝐺 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3128, 30bitrid 283 . . . . . . . . . . . 12 (𝑧 = 𝐺 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3231, 12elrab2 3662 . . . . . . . . . . 11 (𝐺𝑀 ↔ (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3321, 32sylib 218 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3433simpld 494 . . . . . . . . 9 (𝜑𝐺 ∈ ℕ)
3534nnrpd 12993 . . . . . . . 8 (𝜑𝐺 ∈ ℝ+)
3635adantr 480 . . . . . . 7 ((𝜑𝐶𝑀) → 𝐺 ∈ ℝ+)
37 modlt 13842 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝐶 mod 𝐺) < 𝐺)
3816, 36, 37syl2anc 584 . . . . . 6 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) < 𝐺)
3915nnzd 12556 . . . . . . . . 9 ((𝜑𝐶𝑀) → 𝐶 ∈ ℤ)
4034adantr 480 . . . . . . . . 9 ((𝜑𝐶𝑀) → 𝐺 ∈ ℕ)
4139, 40zmodcld 13854 . . . . . . . 8 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) ∈ ℕ0)
4241nn0red 12504 . . . . . . 7 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) ∈ ℝ)
4334nnred 12201 . . . . . . . 8 (𝜑𝐺 ∈ ℝ)
4443adantr 480 . . . . . . 7 ((𝜑𝐶𝑀) → 𝐺 ∈ ℝ)
4542, 44ltnled 11321 . . . . . 6 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝐶 mod 𝐺)))
4638, 45mpbid 232 . . . . 5 ((𝜑𝐶𝑀) → ¬ 𝐺 ≤ (𝐶 mod 𝐺))
4714simprd 495 . . . . . . . . 9 ((𝜑𝐶𝑀) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
4833simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
50 simprll 778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑠 ∈ ℤ)
51 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑢 ∈ ℤ)
5216, 40nndivred 12240 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶𝑀) → (𝐶 / 𝐺) ∈ ℝ)
5352flcld 13760 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶𝑀) → (⌊‘(𝐶 / 𝐺)) ∈ ℤ)
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (⌊‘(𝐶 / 𝐺)) ∈ ℤ)
5551, 54zmulcld 12644 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑢 · (⌊‘(𝐶 / 𝐺))) ∈ ℤ)
5650, 55zsubcld 12643 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ)
57 simprlr 779 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑡 ∈ ℤ)
58 simprrr 781 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑣 ∈ ℤ)
5958, 54zmulcld 12644 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑣 · (⌊‘(𝐶 / 𝐺))) ∈ ℤ)
6057, 59zsubcld 12643 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ)
6117zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℂ)
6261ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝐴 ∈ ℂ)
6350zcnd 12639 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑠 ∈ ℂ)
6462, 63mulcld 11194 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · 𝑠) ∈ ℂ)
6518zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℂ)
6665ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝐵 ∈ ℂ)
6757zcnd 12639 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑡 ∈ ℂ)
6866, 67mulcld 11194 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · 𝑡) ∈ ℂ)
6955zcnd 12639 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑢 · (⌊‘(𝐶 / 𝐺))) ∈ ℂ)
7062, 69mulcld 11194 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) ∈ ℂ)
7159zcnd 12639 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝑣 · (⌊‘(𝐶 / 𝐺))) ∈ ℂ)
7266, 71mulcld 11194 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))) ∈ ℂ)
7364, 68, 70, 72addsub4d 11580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))) = (((𝐴 · 𝑠) − (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺))))) + ((𝐵 · 𝑡) − (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
7451zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑢 ∈ ℂ)
7562, 74mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · 𝑢) ∈ ℂ)
7653zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶𝑀) → (⌊‘(𝐶 / 𝐺)) ∈ ℂ)
7776adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (⌊‘(𝐶 / 𝐺)) ∈ ℂ)
7858zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → 𝑣 ∈ ℂ)
7966, 78mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · 𝑣) ∈ ℂ)
8062, 74, 77mulassd 11197 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐴 · 𝑢) · (⌊‘(𝐶 / 𝐺))) = (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))))
8166, 78, 77mulassd 11197 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐵 · 𝑣) · (⌊‘(𝐶 / 𝐺))) = (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))
8280, 81oveq12d 7405 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑢) · (⌊‘(𝐶 / 𝐺))) + ((𝐵 · 𝑣) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺))))))
8375, 77, 79, 82joinlmuladdmuld 11201 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺))) = ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺))))))
8483oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − ((𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺)))) + (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
8562, 63, 69subdid 11634 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) = ((𝐴 · 𝑠) − (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺))))))
8666, 67, 71subdid 11634 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))) = ((𝐵 · 𝑡) − (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺))))))
8785, 86oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))))) = (((𝐴 · 𝑠) − (𝐴 · (𝑢 · (⌊‘(𝐶 / 𝐺))))) + ((𝐵 · 𝑡) − (𝐵 · (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
8873, 84, 873eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
89 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) → (𝐴 · 𝑥) = (𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))))
9089oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦)))
9190eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) → ((((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦))))
92 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) → (𝐵 · 𝑦) = (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))))
9392oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) → ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦)) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))))))
9493eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) → ((((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · 𝑦)) ↔ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))))))
9591, 94rspc2ev 3601 . . . . . . . . . . . . . . . . 17 (((𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ ∧ (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺)))) ∈ ℤ ∧ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · (𝑠 − (𝑢 · (⌊‘(𝐶 / 𝐺))))) + (𝐵 · (𝑡 − (𝑣 · (⌊‘(𝐶 / 𝐺))))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
9656, 60, 88, 95syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
97 oveq1 7394 . . . . . . . . . . . . . . . . . . 19 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐺 · (⌊‘(𝐶 / 𝐺))) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺))))
98 oveq12 7396 . . . . . . . . . . . . . . . . . . 19 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ (𝐺 · (⌊‘(𝐶 / 𝐺))) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) → (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))))
9997, 98sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))))
10099eqeq1d 2731 . . . . . . . . . . . . . . . . 17 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ((𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1011002rexbidv 3202 . . . . . . . . . . . . . . . 16 ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (((𝐴 · 𝑠) + (𝐵 · 𝑡)) − (((𝐴 · 𝑢) + (𝐵 · 𝑣)) · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
10296, 101syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → ((𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ∧ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
103102expcomd 416 . . . . . . . . . . . . . 14 (((𝜑𝐶𝑀) ∧ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ))) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
104103expr 456 . . . . . . . . . . . . 13 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
105104rexlimdvv 3193 . . . . . . . . . . . 12 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
10649, 105mpd 15 . . . . . . . . . . 11 (((𝜑𝐶𝑀) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
107106ex 412 . . . . . . . . . 10 ((𝜑𝐶𝑀) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
108107rexlimdvv 3193 . . . . . . . . 9 ((𝜑𝐶𝑀) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝐶 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
10947, 108mpd 15 . . . . . . . 8 ((𝜑𝐶𝑀) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
110 modval 13833 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝐶 mod 𝐺) = (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))))
11116, 36, 110syl2anc 584 . . . . . . . . . . 11 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) = (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))))
112111eqcomd 2735 . . . . . . . . . 10 ((𝜑𝐶𝑀) → (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = (𝐶 mod 𝐺))
113112eqeq1d 2731 . . . . . . . . 9 ((𝜑𝐶𝑀) → ((𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1141132rexbidv 3202 . . . . . . . 8 ((𝜑𝐶𝑀) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 − (𝐺 · (⌊‘(𝐶 / 𝐺)))) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
115109, 114mpbid 232 . . . . . . 7 ((𝜑𝐶𝑀) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
116 eqeq1 2733 . . . . . . . . . 10 (𝑧 = (𝐶 mod 𝐺) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1171162rexbidv 3202 . . . . . . . . 9 (𝑧 = (𝐶 mod 𝐺) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
118117, 12elrab2 3662 . . . . . . . 8 ((𝐶 mod 𝐺) ∈ 𝑀 ↔ ((𝐶 mod 𝐺) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
119118simplbi2com 502 . . . . . . 7 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐶 mod 𝐺) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝐶 mod 𝐺) ∈ ℕ → (𝐶 mod 𝐺) ∈ 𝑀))
120115, 119syl 17 . . . . . 6 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) ∈ ℕ → (𝐶 mod 𝐺) ∈ 𝑀))
12112ssrab3 4045 . . . . . . . . 9 𝑀 ⊆ ℕ
122 nnuz 12836 . . . . . . . . 9 ℕ = (ℤ‘1)
123121, 122sseqtri 3995 . . . . . . . 8 𝑀 ⊆ (ℤ‘1)
124 infssuzle 12890 . . . . . . . 8 ((𝑀 ⊆ (ℤ‘1) ∧ (𝐶 mod 𝐺) ∈ 𝑀) → inf(𝑀, ℝ, < ) ≤ (𝐶 mod 𝐺))
125123, 124mpan 690 . . . . . . 7 ((𝐶 mod 𝐺) ∈ 𝑀 → inf(𝑀, ℝ, < ) ≤ (𝐶 mod 𝐺))
12619, 125eqbrtrid 5142 . . . . . 6 ((𝐶 mod 𝐺) ∈ 𝑀𝐺 ≤ (𝐶 mod 𝐺))
127120, 126syl6 35 . . . . 5 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) ∈ ℕ → 𝐺 ≤ (𝐶 mod 𝐺)))
12846, 127mtod 198 . . . 4 ((𝜑𝐶𝑀) → ¬ (𝐶 mod 𝐺) ∈ ℕ)
129 elnn0 12444 . . . . . 6 ((𝐶 mod 𝐺) ∈ ℕ0 ↔ ((𝐶 mod 𝐺) ∈ ℕ ∨ (𝐶 mod 𝐺) = 0))
13041, 129sylib 218 . . . . 5 ((𝜑𝐶𝑀) → ((𝐶 mod 𝐺) ∈ ℕ ∨ (𝐶 mod 𝐺) = 0))
131130ord 864 . . . 4 ((𝜑𝐶𝑀) → (¬ (𝐶 mod 𝐺) ∈ ℕ → (𝐶 mod 𝐺) = 0))
132128, 131mpd 15 . . 3 ((𝜑𝐶𝑀) → (𝐶 mod 𝐺) = 0)
133 dvdsval3 16226 . . . 4 ((𝐺 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝐺𝐶 ↔ (𝐶 mod 𝐺) = 0))
13440, 39, 133syl2anc 584 . . 3 ((𝜑𝐶𝑀) → (𝐺𝐶 ↔ (𝐶 mod 𝐺) = 0))
135132, 134mpbird 257 . 2 ((𝜑𝐶𝑀) → 𝐺𝐶)
136135ex 412 1 (𝜑 → (𝐶𝑀𝐺𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  +crp 12951  cfl 13752   mod cmo 13831  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223
This theorem is referenced by:  bezoutlem4  16512
  Copyright terms: Public domain W3C validator