Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
2 | 1 | hausnei 22387 |
. . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
3 | | simprr1 1219 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → 𝑥 ∈ 𝑧) |
4 | | noel 4261 |
. . . . . . . . . . . . 13
⊢ ¬
𝑦 ∈
∅ |
5 | | simprr3 1221 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → (𝑧 ∩ 𝑤) = ∅) |
6 | 5 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → (𝑦 ∈ (𝑧 ∩ 𝑤) ↔ 𝑦 ∈ ∅)) |
7 | 4, 6 | mtbiri 326 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → ¬ 𝑦 ∈ (𝑧 ∩ 𝑤)) |
8 | | simprr2 1220 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → 𝑦 ∈ 𝑤) |
9 | | elin 3899 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝑧 ∩ 𝑤) ↔ (𝑦 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤)) |
10 | 9 | simplbi2com 502 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑤 → (𝑦 ∈ 𝑧 → 𝑦 ∈ (𝑧 ∩ 𝑤))) |
11 | 8, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → (𝑦 ∈ 𝑧 → 𝑦 ∈ (𝑧 ∩ 𝑤))) |
12 | 7, 11 | mtod 197 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → ¬ 𝑦 ∈ 𝑧) |
13 | 3, 12 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) ∧ (𝑤 ∈ 𝐽 ∧ (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) → (𝑥 ∈ 𝑧 ∧ ¬ 𝑦 ∈ 𝑧)) |
14 | 13 | rexlimdvaa 3213 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) ∧ 𝑧 ∈ 𝐽) → (∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅) → (𝑥 ∈ 𝑧 ∧ ¬ 𝑦 ∈ 𝑧))) |
15 | 14 | reximdva 3202 |
. . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) → (∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ¬ 𝑦 ∈ 𝑧))) |
16 | 2, 15 | mpd 15 |
. . . . . . 7
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ∧ ¬ 𝑦 ∈ 𝑧)) |
17 | | rexanali 3191 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐽 (𝑥 ∈ 𝑧 ∧ ¬ 𝑦 ∈ 𝑧) ↔ ¬ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
18 | 16, 17 | sylib 217 |
. . . . . 6
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) → ¬ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
19 | 18 | 3exp2 1352 |
. . . . 5
⊢ (𝐽 ∈ Haus → (𝑥 ∈ ∪ 𝐽
→ (𝑦 ∈ ∪ 𝐽
→ (𝑥 ≠ 𝑦 → ¬ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))))) |
20 | 19 | imp32 418 |
. . . 4
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽))
→ (𝑥 ≠ 𝑦 → ¬ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
21 | 20 | necon4ad 2961 |
. . 3
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽))
→ (∀𝑧 ∈
𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦)) |
22 | 21 | ralrimivva 3114 |
. 2
⊢ (𝐽 ∈ Haus →
∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦)) |
23 | | haustop 22390 |
. . . 4
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
24 | | toptopon2 21975 |
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
25 | 23, 24 | sylib 217 |
. . 3
⊢ (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
26 | | ist1-2 22406 |
. . 3
⊢ (𝐽 ∈ (TopOn‘∪ 𝐽)
→ (𝐽 ∈ Fre ↔
∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦))) |
27 | 25, 26 | syl 17 |
. 2
⊢ (𝐽 ∈ Haus → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦))) |
28 | 22, 27 | mpbird 256 |
1
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) |