MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haust1 Structured version   Visualization version   GIF version

Theorem haust1 23267
Description: A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
haust1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)

Proof of Theorem haust1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
21hausnei 23243 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))
3 simprr1 1222 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑥𝑧)
4 noel 4285 . . . . . . . . . . . . 13 ¬ 𝑦 ∈ ∅
5 simprr3 1224 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑧𝑤) = ∅)
65eleq2d 2817 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦 ∈ (𝑧𝑤) ↔ 𝑦 ∈ ∅))
74, 6mtbiri 327 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦 ∈ (𝑧𝑤))
8 simprr2 1223 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑦𝑤)
9 elin 3913 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑧𝑤) ↔ (𝑦𝑧𝑦𝑤))
109simplbi2com 502 . . . . . . . . . . . . 13 (𝑦𝑤 → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
118, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
127, 11mtod 198 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦𝑧)
133, 12jca 511 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑥𝑧 ∧ ¬ 𝑦𝑧))
1413rexlimdvaa 3134 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) → (∃𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
1514reximdva 3145 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → (∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
162, 15mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧))
17 rexanali 3086 . . . . . . 7 (∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧) ↔ ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
1816, 17sylib 218 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
19183exp2 1355 . . . . 5 (𝐽 ∈ Haus → (𝑥 𝐽 → (𝑦 𝐽 → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))))
2019imp32 418 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))
2120necon4ad 2947 . . 3 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
2221ralrimivva 3175 . 2 (𝐽 ∈ Haus → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
23 haustop 23246 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
24 toptopon2 22833 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2523, 24sylib 218 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘ 𝐽))
26 ist1-2 23262 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2725, 26syl 17 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2822, 27mpbird 257 1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3896  c0 4280   cuni 4856  cfv 6481  Topctop 22808  TopOnctopon 22825  Frect1 23222  Hauscha 23223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17347  df-top 22809  df-topon 22826  df-cld 22934  df-t1 23229  df-haus 23230
This theorem is referenced by:  sncld  23286  ishaus3  23738  reghaus  23740  nrmhaus  23741  tgpt1  24033  metreg  24779  ipasslem8  30817  sitmcl  34364  onint1  36493  oninhaus  36494  poimirlem30  37689
  Copyright terms: Public domain W3C validator