MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haust1 Structured version   Visualization version   GIF version

Theorem haust1 21439
Description: A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
haust1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)

Proof of Theorem haust1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . . . . . . 9 𝐽 = 𝐽
21hausnei 21415 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))
3 simprr1 1287 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑥𝑧)
4 noel 4085 . . . . . . . . . . . . 13 ¬ 𝑦 ∈ ∅
5 simprr3 1291 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑧𝑤) = ∅)
65eleq2d 2830 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦 ∈ (𝑧𝑤) ↔ 𝑦 ∈ ∅))
74, 6mtbiri 318 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦 ∈ (𝑧𝑤))
8 simprr2 1289 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑦𝑤)
9 elin 3960 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑧𝑤) ↔ (𝑦𝑧𝑦𝑤))
109simplbi2com 496 . . . . . . . . . . . . 13 (𝑦𝑤 → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
118, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
127, 11mtod 189 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦𝑧)
133, 12jca 507 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑥𝑧 ∧ ¬ 𝑦𝑧))
1413rexlimdvaa 3179 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) → (∃𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
1514reximdva 3163 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → (∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
162, 15mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧))
17 rexanali 3144 . . . . . . 7 (∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧) ↔ ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
1816, 17sylib 209 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
19183exp2 1463 . . . . 5 (𝐽 ∈ Haus → (𝑥 𝐽 → (𝑦 𝐽 → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))))
2019imp32 409 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))
2120necon4ad 2956 . . 3 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
2221ralrimivva 3118 . 2 (𝐽 ∈ Haus → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
23 haustop 21418 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
241toptopon 21004 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2523, 24sylib 209 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘ 𝐽))
26 ist1-2 21434 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2725, 26syl 17 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2822, 27mpbird 248 1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  cin 3733  c0 4081   cuni 4596  cfv 6070  Topctop 20980  TopOnctopon 20997  Frect1 21394  Hauscha 21395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-iota 6033  df-fun 6072  df-fv 6078  df-topgen 16373  df-top 20981  df-topon 20998  df-cld 21106  df-t1 21401  df-haus 21402
This theorem is referenced by:  sncld  21458  ishaus3  21909  reghaus  21911  nrmhaus  21912  tgpt1  22203  metreg  22948  ipasslem8  28151  sitmcl  30863  onint1  32890  oninhaus  32891  poimirlem30  33866
  Copyright terms: Public domain W3C validator