MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswcshw Structured version   Visualization version   GIF version

Theorem repswcshw 14762
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
repswcshw ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))

Proof of Theorem repswcshw
StepHypRef Expression
1 0csh0 14743 . . . . 5 (∅ cyclShift 𝐼) = ∅
2 repsw0 14727 . . . . . 6 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
32oveq1d 7424 . . . . 5 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (∅ cyclShift 𝐼))
41, 3, 23eqtr4a 2799 . . . 4 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
543ad2ant1 1134 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
6 oveq2 7417 . . . . 5 (𝑁 = 0 → (𝑆 repeatS 𝑁) = (𝑆 repeatS 0))
76oveq1d 7424 . . . 4 (𝑁 = 0 → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = ((𝑆 repeatS 0) cyclShift 𝐼))
87, 6eqeq12d 2749 . . 3 (𝑁 = 0 → (((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁) ↔ ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0)))
95, 8imbitrrid 245 . 2 (𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
10 idd 24 . . . 4 𝑁 = 0 → (𝑆𝑉𝑆𝑉))
11 df-ne 2942 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
12 elnnne0 12486 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
1312simplbi2com 504 . . . . 5 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
1411, 13sylbir 234 . . . 4 𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
15 idd 24 . . . 4 𝑁 = 0 → (𝐼 ∈ ℤ → 𝐼 ∈ ℤ))
1610, 14, 153anim123d 1444 . . 3 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ)))
17 nnnn0 12479 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1817anim2i 618 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑉𝑁 ∈ ℕ0))
19 repsw 14725 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
2018, 19syl 17 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
21 cshword 14741 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
2220, 21stoic3 1779 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
23 repswlen 14726 . . . . . . . . . 10 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2418, 23syl 17 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2524oveq2d 7425 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ) → (𝐼 mod (♯‘(𝑆 repeatS 𝑁))) = (𝐼 mod 𝑁))
2625, 24opeq12d 4882 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ) → ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩ = ⟨(𝐼 mod 𝑁), 𝑁⟩)
2726oveq2d 7425 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) = ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩))
2825oveq2d 7425 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))) = ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)))
2927, 28oveq12d 7427 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
30293adant3 1133 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
31183adant3 1133 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ0))
32 zmodcl 13856 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℕ0)
3332ancoms 460 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
3417adantr 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
3533, 34jca 513 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
36353adant1 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
37 nnre 12219 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3837leidd 11780 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁𝑁)
39383ad2ant2 1135 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁𝑁)
40 repswswrd 14734 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑁) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
4131, 36, 39, 40syl3anc 1372 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
42 simp1 1137 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑆𝑉)
43173ad2ant2 1135 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
44 zmodfzp1 13860 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
4544ancoms 460 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
46453adant1 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
47 repswpfx 14735 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4842, 43, 46, 47syl3anc 1372 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4941, 48oveq12d 7427 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))))
5032nn0red 12533 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℝ)
5150ancoms 460 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℝ)
5237adantr 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
53 zre 12562 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
54 nnrp 12985 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
55 modlt 13845 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐼 mod 𝑁) < 𝑁)
5653, 54, 55syl2anr 598 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) < 𝑁)
5751, 52, 56ltled 11362 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
58573adant1 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
59333adant1 1131 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
60 nn0sub 12522 . . . . . . . 8 (((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6159, 43, 60syl2anc 585 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6258, 61mpbid 231 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0)
63 repswccat 14736 . . . . . 6 ((𝑆𝑉 ∧ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
6442, 62, 59, 63syl3anc 1372 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
65 nncn 12220 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6665adantl 483 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6732nn0cnd 12534 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℂ)
6866, 67npcand 11575 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
6968ancoms 460 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
70693adant1 1131 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
7170oveq2d 7425 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7249, 64, 713eqtrd 2777 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7322, 30, 723eqtrd 2777 . . 3 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
7416, 73syl6 35 . 2 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
759, 74pm2.61i 182 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  c0 4323  cop 4635   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110   + caddc 11113   < clt 11248  cle 11249  cmin 11444  cn 12212  0cn0 12472  cz 12558  +crp 12974  ...cfz 13484   mod cmo 13834  chash 14290  Word cword 14464   ++ cconcat 14520   substr csubstr 14590   prefix cpfx 14620   repeatS creps 14718   cyclShift ccsh 14738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-reps 14719  df-csh 14739
This theorem is referenced by:  cshwrepswhash1  17036
  Copyright terms: Public domain W3C validator