MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswcshw Structured version   Visualization version   GIF version

Theorem repswcshw 14721
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
repswcshw ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))

Proof of Theorem repswcshw
StepHypRef Expression
1 0csh0 14702 . . . . 5 (∅ cyclShift 𝐼) = ∅
2 repsw0 14686 . . . . . 6 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
32oveq1d 7367 . . . . 5 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (∅ cyclShift 𝐼))
41, 3, 23eqtr4a 2794 . . . 4 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
543ad2ant1 1133 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
6 oveq2 7360 . . . . 5 (𝑁 = 0 → (𝑆 repeatS 𝑁) = (𝑆 repeatS 0))
76oveq1d 7367 . . . 4 (𝑁 = 0 → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = ((𝑆 repeatS 0) cyclShift 𝐼))
87, 6eqeq12d 2749 . . 3 (𝑁 = 0 → (((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁) ↔ ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0)))
95, 8imbitrrid 246 . 2 (𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
10 idd 24 . . . 4 𝑁 = 0 → (𝑆𝑉𝑆𝑉))
11 df-ne 2930 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
12 elnnne0 12402 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
1312simplbi2com 502 . . . . 5 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
1411, 13sylbir 235 . . . 4 𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
15 idd 24 . . . 4 𝑁 = 0 → (𝐼 ∈ ℤ → 𝐼 ∈ ℤ))
1610, 14, 153anim123d 1445 . . 3 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ)))
17 nnnn0 12395 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1817anim2i 617 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑉𝑁 ∈ ℕ0))
19 repsw 14684 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
2018, 19syl 17 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
21 cshword 14700 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
2220, 21stoic3 1777 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
23 repswlen 14685 . . . . . . . . . 10 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2418, 23syl 17 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2524oveq2d 7368 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ) → (𝐼 mod (♯‘(𝑆 repeatS 𝑁))) = (𝐼 mod 𝑁))
2625, 24opeq12d 4832 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ) → ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩ = ⟨(𝐼 mod 𝑁), 𝑁⟩)
2726oveq2d 7368 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) = ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩))
2825oveq2d 7368 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))) = ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)))
2927, 28oveq12d 7370 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
30293adant3 1132 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
31183adant3 1132 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ0))
32 zmodcl 13797 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℕ0)
3332ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
3417adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
3533, 34jca 511 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
36353adant1 1130 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
37 nnre 12139 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3837leidd 11690 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁𝑁)
39383ad2ant2 1134 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁𝑁)
40 repswswrd 14693 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑁) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
4131, 36, 39, 40syl3anc 1373 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
42 simp1 1136 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑆𝑉)
43173ad2ant2 1134 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
44 zmodfzp1 13801 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
4544ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
46453adant1 1130 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
47 repswpfx 14694 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4842, 43, 46, 47syl3anc 1373 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4941, 48oveq12d 7370 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))))
5032nn0red 12450 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℝ)
5150ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℝ)
5237adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
53 zre 12479 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
54 nnrp 12904 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
55 modlt 13786 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐼 mod 𝑁) < 𝑁)
5653, 54, 55syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) < 𝑁)
5751, 52, 56ltled 11268 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
58573adant1 1130 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
59333adant1 1130 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
60 nn0sub 12438 . . . . . . . 8 (((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6159, 43, 60syl2anc 584 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6258, 61mpbid 232 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0)
63 repswccat 14695 . . . . . 6 ((𝑆𝑉 ∧ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
6442, 62, 59, 63syl3anc 1373 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
65 nncn 12140 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6665adantl 481 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6732nn0cnd 12451 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℂ)
6866, 67npcand 11483 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
6968ancoms 458 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
70693adant1 1130 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
7170oveq2d 7368 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7249, 64, 713eqtrd 2772 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7322, 30, 723eqtrd 2772 . . 3 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
7416, 73syl6 35 . 2 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
759, 74pm2.61i 182 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  c0 4282  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013   + caddc 11016   < clt 11153  cle 11154  cmin 11351  cn 12132  0cn0 12388  cz 12475  +crp 12892  ...cfz 13409   mod cmo 13775  chash 14239  Word cword 14422   ++ cconcat 14479   substr csubstr 14550   prefix cpfx 14580   repeatS creps 14677   cyclShift ccsh 14697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-hash 14240  df-word 14423  df-concat 14480  df-substr 14551  df-pfx 14581  df-reps 14678  df-csh 14698
This theorem is referenced by:  cshwrepswhash1  17016
  Copyright terms: Public domain W3C validator