MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswcshw Structured version   Visualization version   GIF version

Theorem repswcshw 14850
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
repswcshw ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))

Proof of Theorem repswcshw
StepHypRef Expression
1 0csh0 14831 . . . . 5 (∅ cyclShift 𝐼) = ∅
2 repsw0 14815 . . . . . 6 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
32oveq1d 7446 . . . . 5 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (∅ cyclShift 𝐼))
41, 3, 23eqtr4a 2803 . . . 4 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
543ad2ant1 1134 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
6 oveq2 7439 . . . . 5 (𝑁 = 0 → (𝑆 repeatS 𝑁) = (𝑆 repeatS 0))
76oveq1d 7446 . . . 4 (𝑁 = 0 → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = ((𝑆 repeatS 0) cyclShift 𝐼))
87, 6eqeq12d 2753 . . 3 (𝑁 = 0 → (((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁) ↔ ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0)))
95, 8imbitrrid 246 . 2 (𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
10 idd 24 . . . 4 𝑁 = 0 → (𝑆𝑉𝑆𝑉))
11 df-ne 2941 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
12 elnnne0 12540 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
1312simplbi2com 502 . . . . 5 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
1411, 13sylbir 235 . . . 4 𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
15 idd 24 . . . 4 𝑁 = 0 → (𝐼 ∈ ℤ → 𝐼 ∈ ℤ))
1610, 14, 153anim123d 1445 . . 3 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ)))
17 nnnn0 12533 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1817anim2i 617 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑉𝑁 ∈ ℕ0))
19 repsw 14813 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
2018, 19syl 17 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
21 cshword 14829 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
2220, 21stoic3 1776 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
23 repswlen 14814 . . . . . . . . . 10 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2418, 23syl 17 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2524oveq2d 7447 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ) → (𝐼 mod (♯‘(𝑆 repeatS 𝑁))) = (𝐼 mod 𝑁))
2625, 24opeq12d 4881 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ) → ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩ = ⟨(𝐼 mod 𝑁), 𝑁⟩)
2726oveq2d 7447 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) = ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩))
2825oveq2d 7447 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))) = ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)))
2927, 28oveq12d 7449 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
30293adant3 1133 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
31183adant3 1133 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ0))
32 zmodcl 13931 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℕ0)
3332ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
3417adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
3533, 34jca 511 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
36353adant1 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
37 nnre 12273 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3837leidd 11829 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁𝑁)
39383ad2ant2 1135 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁𝑁)
40 repswswrd 14822 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑁) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
4131, 36, 39, 40syl3anc 1373 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
42 simp1 1137 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑆𝑉)
43173ad2ant2 1135 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
44 zmodfzp1 13935 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
4544ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
46453adant1 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
47 repswpfx 14823 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4842, 43, 46, 47syl3anc 1373 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4941, 48oveq12d 7449 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))))
5032nn0red 12588 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℝ)
5150ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℝ)
5237adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
53 zre 12617 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
54 nnrp 13046 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
55 modlt 13920 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐼 mod 𝑁) < 𝑁)
5653, 54, 55syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) < 𝑁)
5751, 52, 56ltled 11409 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
58573adant1 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
59333adant1 1131 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
60 nn0sub 12576 . . . . . . . 8 (((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6159, 43, 60syl2anc 584 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6258, 61mpbid 232 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0)
63 repswccat 14824 . . . . . 6 ((𝑆𝑉 ∧ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
6442, 62, 59, 63syl3anc 1373 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
65 nncn 12274 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6665adantl 481 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6732nn0cnd 12589 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℂ)
6866, 67npcand 11624 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
6968ancoms 458 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
70693adant1 1131 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
7170oveq2d 7447 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7249, 64, 713eqtrd 2781 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7322, 30, 723eqtrd 2781 . . 3 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
7416, 73syl6 35 . 2 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
759, 74pm2.61i 182 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  c0 4333  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  +crp 13034  ...cfz 13547   mod cmo 13909  chash 14369  Word cword 14552   ++ cconcat 14608   substr csubstr 14678   prefix cpfx 14708   repeatS creps 14806   cyclShift ccsh 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-reps 14807  df-csh 14827
This theorem is referenced by:  cshwrepswhash1  17140
  Copyright terms: Public domain W3C validator