MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswcshw Structured version   Visualization version   GIF version

Theorem repswcshw 14847
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
repswcshw ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))

Proof of Theorem repswcshw
StepHypRef Expression
1 0csh0 14828 . . . . 5 (∅ cyclShift 𝐼) = ∅
2 repsw0 14812 . . . . . 6 (𝑆𝑉 → (𝑆 repeatS 0) = ∅)
32oveq1d 7446 . . . . 5 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (∅ cyclShift 𝐼))
41, 3, 23eqtr4a 2801 . . . 4 (𝑆𝑉 → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
543ad2ant1 1132 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0))
6 oveq2 7439 . . . . 5 (𝑁 = 0 → (𝑆 repeatS 𝑁) = (𝑆 repeatS 0))
76oveq1d 7446 . . . 4 (𝑁 = 0 → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = ((𝑆 repeatS 0) cyclShift 𝐼))
87, 6eqeq12d 2751 . . 3 (𝑁 = 0 → (((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁) ↔ ((𝑆 repeatS 0) cyclShift 𝐼) = (𝑆 repeatS 0)))
95, 8imbitrrid 246 . 2 (𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
10 idd 24 . . . 4 𝑁 = 0 → (𝑆𝑉𝑆𝑉))
11 df-ne 2939 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
12 elnnne0 12538 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
1312simplbi2com 502 . . . . 5 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
1411, 13sylbir 235 . . . 4 𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ))
15 idd 24 . . . 4 𝑁 = 0 → (𝐼 ∈ ℤ → 𝐼 ∈ ℤ))
1610, 14, 153anim123d 1442 . . 3 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ)))
17 nnnn0 12531 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1817anim2i 617 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑉𝑁 ∈ ℕ0))
19 repsw 14810 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
2018, 19syl 17 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
21 cshword 14826 . . . . 5 (((𝑆 repeatS 𝑁) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
2220, 21stoic3 1773 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))))
23 repswlen 14811 . . . . . . . . . 10 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2418, 23syl 17 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
2524oveq2d 7447 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ) → (𝐼 mod (♯‘(𝑆 repeatS 𝑁))) = (𝐼 mod 𝑁))
2625, 24opeq12d 4886 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ) → ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩ = ⟨(𝐼 mod 𝑁), 𝑁⟩)
2726oveq2d 7447 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) = ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩))
2825oveq2d 7447 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁)))) = ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)))
2927, 28oveq12d 7449 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
30293adant3 1131 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod (♯‘(𝑆 repeatS 𝑁))), (♯‘(𝑆 repeatS 𝑁))⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod (♯‘(𝑆 repeatS 𝑁))))) = (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))))
31183adant3 1131 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆𝑉𝑁 ∈ ℕ0))
32 zmodcl 13928 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℕ0)
3332ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
3417adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
3533, 34jca 511 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
36353adant1 1129 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0))
37 nnre 12271 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3837leidd 11827 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁𝑁)
39383ad2ant2 1133 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁𝑁)
40 repswswrd 14819 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑁) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
4131, 36, 39, 40syl3anc 1370 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) = (𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))))
42 simp1 1135 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑆𝑉)
43173ad2ant2 1133 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℕ0)
44 zmodfzp1 13932 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
4544ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
46453adant1 1129 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ (0...𝑁))
47 repswpfx 14820 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4842, 43, 46, 47syl3anc 1370 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁)) = (𝑆 repeatS (𝐼 mod 𝑁)))
4941, 48oveq12d 7449 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))))
5032nn0red 12586 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℝ)
5150ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℝ)
5237adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
53 zre 12615 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
54 nnrp 13044 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
55 modlt 13917 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐼 mod 𝑁) < 𝑁)
5653, 54, 55syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) < 𝑁)
5751, 52, 56ltled 11407 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
58573adant1 1129 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ≤ 𝑁)
59333adant1 1129 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
60 nn0sub 12574 . . . . . . . 8 (((𝐼 mod 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6159, 43, 60syl2anc 584 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝐼 mod 𝑁) ≤ 𝑁 ↔ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0))
6258, 61mpbid 232 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0)
63 repswccat 14821 . . . . . 6 ((𝑆𝑉 ∧ (𝑁 − (𝐼 mod 𝑁)) ∈ ℕ0 ∧ (𝐼 mod 𝑁) ∈ ℕ0) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
6442, 62, 59, 63syl3anc 1370 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS (𝑁 − (𝐼 mod 𝑁))) ++ (𝑆 repeatS (𝐼 mod 𝑁))) = (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))))
65 nncn 12272 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6665adantl 481 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6732nn0cnd 12587 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐼 mod 𝑁) ∈ ℂ)
6866, 67npcand 11622 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
6968ancoms 458 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
70693adant1 1129 . . . . . 6 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁)) = 𝑁)
7170oveq2d 7447 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (𝑆 repeatS ((𝑁 − (𝐼 mod 𝑁)) + (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7249, 64, 713eqtrd 2779 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → (((𝑆 repeatS 𝑁) substr ⟨(𝐼 mod 𝑁), 𝑁⟩) ++ ((𝑆 repeatS 𝑁) prefix (𝐼 mod 𝑁))) = (𝑆 repeatS 𝑁))
7322, 30, 723eqtrd 2779 . . 3 ((𝑆𝑉𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
7416, 73syl6 35 . 2 𝑁 = 0 → ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)))
759, 74pm2.61i 182 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  c0 4339  cop 4637   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  0cn0 12524  cz 12611  +crp 13032  ...cfz 13544   mod cmo 13906  chash 14366  Word cword 14549   ++ cconcat 14605   substr csubstr 14675   prefix cpfx 14705   repeatS creps 14803   cyclShift ccsh 14823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-reps 14804  df-csh 14824
This theorem is referenced by:  cshwrepswhash1  17137
  Copyright terms: Public domain W3C validator