MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smocdmdom Structured version   Visualization version   GIF version

Theorem smocdmdom 8337
Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.)
Assertion
Ref Expression
smocdmdom ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)

Proof of Theorem smocdmdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹:𝐴𝐵)
21ffnd 6689 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹 Fn 𝐴)
3 simpl2 1193 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Smo 𝐹)
4 smodm2 8324 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
52, 3, 4syl2anc 584 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐴)
6 ordelord 6354 . . . . 5 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
75, 6sylancom 588 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝑥)
8 simpl3 1194 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐵)
9 simpr 484 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
10 smogt 8336 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
112, 3, 9, 10syl3anc 1373 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
12 ffvelcdm 7053 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
13123ad2antl1 1186 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
14 ordtr2 6377 . . . . 5 ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥𝐵))
1514imp 406 . . . 4 (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵)) → 𝑥𝐵)
167, 8, 11, 13, 15syl22anc 838 . . 3 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
1716ex 412 . 2 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥𝐴𝑥𝐵))
1817ssrdv 3952 1 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wss 3914  Ord word 6331   Fn wfn 6506  wf 6507  cfv 6511  Smo wsmo 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-smo 8315
This theorem is referenced by:  cofsmo  10222  hsmexlem1  10379
  Copyright terms: Public domain W3C validator