MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smocdmdom Structured version   Visualization version   GIF version

Theorem smocdmdom 8350
Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.)
Assertion
Ref Expression
smocdmdom ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)

Proof of Theorem smocdmdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹:𝐴𝐵)
21ffnd 6705 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹 Fn 𝐴)
3 simpl2 1192 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Smo 𝐹)
4 smodm2 8337 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
52, 3, 4syl2anc 584 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐴)
6 ordelord 6375 . . . . 5 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
75, 6sylancom 588 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝑥)
8 simpl3 1193 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐵)
9 simpr 485 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
10 smogt 8349 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
112, 3, 9, 10syl3anc 1371 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
12 ffvelcdm 7068 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
13123ad2antl1 1185 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
14 ordtr2 6397 . . . . 5 ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥𝐵))
1514imp 407 . . . 4 (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵)) → 𝑥𝐵)
167, 8, 11, 13, 15syl22anc 837 . . 3 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
1716ex 413 . 2 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥𝐴𝑥𝐵))
1817ssrdv 3984 1 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106  wss 3944  Ord word 6352   Fn wfn 6527  wf 6528  cfv 6532  Smo wsmo 8327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-ord 6356  df-on 6357  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-fv 6540  df-smo 8328
This theorem is referenced by:  cofsmo  10246  hsmexlem1  10403
  Copyright terms: Public domain W3C validator