![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smocdmdom | Structured version Visualization version GIF version |
Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.) |
Ref | Expression |
---|---|
smocdmdom | ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6719 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn 𝐴) |
3 | simpl2 1193 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Smo 𝐹) | |
4 | smodm2 8355 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
5 | 2, 3, 4 | syl2anc 585 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) |
6 | ordelord 6387 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
7 | 5, 6 | sylancom 589 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
8 | simpl3 1194 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐵) | |
9 | simpr 486 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
10 | smogt 8367 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) | |
11 | 2, 3, 9, 10 | syl3anc 1372 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) |
12 | ffvelcdm 7084 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
13 | 12 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
14 | ordtr2 6409 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) | |
15 | 14 | imp 408 | . . . 4 ⊢ (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
16 | 7, 8, 11, 13, 15 | syl22anc 838 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
17 | 16 | ex 414 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
18 | 17 | ssrdv 3989 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ⊆ wss 3949 Ord word 6364 Fn wfn 6539 ⟶wf 6540 ‘cfv 6544 Smo wsmo 8345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-ord 6368 df-on 6369 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-smo 8346 |
This theorem is referenced by: cofsmo 10264 hsmexlem1 10421 |
Copyright terms: Public domain | W3C validator |