MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smocdmdom Structured version   Visualization version   GIF version

Theorem smocdmdom 8369
Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.)
Assertion
Ref Expression
smocdmdom ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)

Proof of Theorem smocdmdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹:𝐴𝐵)
21ffnd 6712 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹 Fn 𝐴)
3 simpl2 1189 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Smo 𝐹)
4 smodm2 8356 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
52, 3, 4syl2anc 583 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐴)
6 ordelord 6380 . . . . 5 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
75, 6sylancom 587 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝑥)
8 simpl3 1190 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐵)
9 simpr 484 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
10 smogt 8368 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
112, 3, 9, 10syl3anc 1368 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
12 ffvelcdm 7077 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
13123ad2antl1 1182 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
14 ordtr2 6402 . . . . 5 ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥𝐵))
1514imp 406 . . . 4 (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵)) → 𝑥𝐵)
167, 8, 11, 13, 15syl22anc 836 . . 3 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
1716ex 412 . 2 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥𝐴𝑥𝐵))
1817ssrdv 3983 1 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098  wss 3943  Ord word 6357   Fn wfn 6532  wf 6533  cfv 6537  Smo wsmo 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-ord 6361  df-on 6362  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-smo 8347
This theorem is referenced by:  cofsmo  10266  hsmexlem1  10423
  Copyright terms: Public domain W3C validator