| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹) → 𝐹:𝐴⟶𝐵) |
| 2 | | ffn 6711 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 3 | | smodm2 8374 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| 4 | | ordelord 6379 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝑧 ∈ 𝐴) → Ord 𝑧) |
| 5 | 4 | ex 412 |
. . . . . . 7
⊢ (Ord
𝐴 → (𝑧 ∈ 𝐴 → Ord 𝑧)) |
| 6 | 3, 5 | syl 17 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑧 ∈ 𝐴 → Ord 𝑧)) |
| 7 | | ordelord 6379 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝑤 ∈ 𝐴) → Ord 𝑤) |
| 8 | 7 | ex 412 |
. . . . . . 7
⊢ (Ord
𝐴 → (𝑤 ∈ 𝐴 → Ord 𝑤)) |
| 9 | 3, 8 | syl 17 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑤 ∈ 𝐴 → Ord 𝑤)) |
| 10 | 6, 9 | anim12d 609 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (Ord 𝑧 ∧ Ord 𝑤))) |
| 11 | | ordtri3or 6389 |
. . . . . . 7
⊢ ((Ord
𝑧 ∧ Ord 𝑤) → (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
| 12 | | simp1rr 1240 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → 𝑤 ∈ 𝐴) |
| 13 | | smoel2 8382 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 14 | 13 | ralrimivva 3188 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 17 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → 𝑧 ∈ 𝑤) |
| 18 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 19 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 20 | 19 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ∈ (𝐹‘𝑤))) |
| 21 | 20 | raleqbi1dv 3321 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝑤 (𝐹‘𝑦) ∈ (𝐹‘𝑤))) |
| 22 | 21 | rspcv 3602 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑦 ∈ 𝑤 (𝐹‘𝑦) ∈ (𝐹‘𝑤))) |
| 23 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 24 | 23 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) ∈ (𝐹‘𝑤) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑤))) |
| 25 | 24 | rspccv 3603 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑤 (𝐹‘𝑦) ∈ (𝐹‘𝑤) → (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤))) |
| 26 | 22, 25 | syl6 35 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤)))) |
| 27 | 26 | 3imp 1110 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ∧ 𝑧 ∈ 𝑤) → (𝐹‘𝑧) ∈ (𝐹‘𝑤)) |
| 28 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑧) = (𝐹‘𝑤) → ((𝐹‘𝑧) ∈ (𝐹‘𝑤) ↔ (𝐹‘𝑤) ∈ (𝐹‘𝑤))) |
| 29 | 28 | biimpac 478 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑧) ∈ (𝐹‘𝑤) ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 30 | 27, 29 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ∧ 𝑧 ∈ 𝑤) ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 31 | 12, 16, 17, 18, 30 | syl31anc 1375 |
. . . . . . . . . 10
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 32 | | smofvon2 8375 |
. . . . . . . . . . . . 13
⊢ (Smo
𝐹 → (𝐹‘𝑤) ∈ On) |
| 33 | | eloni 6367 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) ∈ On → Ord (𝐹‘𝑤)) |
| 34 | | ordirr 6375 |
. . . . . . . . . . . . 13
⊢ (Ord
(𝐹‘𝑤) → ¬ (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (Smo
𝐹 → ¬ (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 36 | 35 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ¬ (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 37 | 36 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → ¬ (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 38 | 31, 37 | pm2.21dd 195 |
. . . . . . . . 9
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑤 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → 𝑧 = 𝑤) |
| 39 | 38 | 3exp 1119 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧 ∈ 𝑤 → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 40 | | ax-1 6 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 41 | 40 | a1i 11 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑧 = 𝑤 → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 42 | | simp1rl 1239 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → 𝑧 ∈ 𝐴) |
| 43 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 44 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → 𝑤 ∈ 𝑧) |
| 45 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 46 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 47 | 46 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ∈ (𝐹‘𝑧))) |
| 48 | 47 | raleqbi1dv 3321 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝑧 (𝐹‘𝑦) ∈ (𝐹‘𝑧))) |
| 49 | 48 | rspcv 3602 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑦 ∈ 𝑧 (𝐹‘𝑦) ∈ (𝐹‘𝑧))) |
| 50 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
| 51 | 50 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑦) ∈ (𝐹‘𝑧) ↔ (𝐹‘𝑤) ∈ (𝐹‘𝑧))) |
| 52 | 51 | rspccv 3603 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑧 (𝐹‘𝑦) ∈ (𝐹‘𝑧) → (𝑤 ∈ 𝑧 → (𝐹‘𝑤) ∈ (𝐹‘𝑧))) |
| 53 | 49, 52 | syl6 35 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → (𝑤 ∈ 𝑧 → (𝐹‘𝑤) ∈ (𝐹‘𝑧)))) |
| 54 | 53 | 3imp 1110 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ 𝑧) → (𝐹‘𝑤) ∈ (𝐹‘𝑧)) |
| 55 | | eleq2 2824 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑧) = (𝐹‘𝑤) → ((𝐹‘𝑤) ∈ (𝐹‘𝑧) ↔ (𝐹‘𝑤) ∈ (𝐹‘𝑤))) |
| 56 | 55 | biimpac 478 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑤) ∈ (𝐹‘𝑧) ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 57 | 54, 56 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ 𝑧) ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 58 | 42, 43, 44, 45, 57 | syl31anc 1375 |
. . . . . . . . . 10
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 59 | 36 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → ¬ (𝐹‘𝑤) ∈ (𝐹‘𝑤)) |
| 60 | 58, 59 | pm2.21dd 195 |
. . . . . . . . 9
⊢ ((((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) ∧ 𝑤 ∈ 𝑧 ∧ (𝐹‘𝑧) = (𝐹‘𝑤)) → 𝑧 = 𝑤) |
| 61 | 60 | 3exp 1119 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑤 ∈ 𝑧 → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 62 | 39, 41, 61 | 3jaod 1431 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 63 | 11, 62 | syl5 34 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((Ord 𝑧 ∧ Ord 𝑤) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 64 | 63 | ex 412 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → ((Ord 𝑧 ∧ Ord 𝑤) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)))) |
| 65 | 10, 64 | mpdd 43 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 66 | 65 | ralrimivv 3186 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 67 | 2, 66 | sylan 580 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹) → ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 68 | | dff13 7252 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 69 | 1, 67, 68 | sylanbrc 583 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹) → 𝐹:𝐴–1-1→𝐵) |