MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smogt Structured version   Visualization version   GIF version

Theorem smogt 8363
Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
smogt ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))

Proof of Theorem smogt
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑥 = 𝐶𝑥 = 𝐶)
2 fveq2 6882 . . . . . 6 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
31, 2sseq12d 4008 . . . . 5 (𝑥 = 𝐶 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐶 ⊆ (𝐹𝐶)))
43imbi2d 340 . . . 4 (𝑥 = 𝐶 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹𝐶))))
5 smodm2 8351 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
653adant3 1129 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → Ord 𝐴)
7 simp3 1135 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥𝐴)
8 ordelord 6377 . . . . . . . . 9 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
96, 7, 8syl2anc 583 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → Ord 𝑥)
10 vex 3470 . . . . . . . . 9 𝑥 ∈ V
1110elon 6364 . . . . . . . 8 (𝑥 ∈ On ↔ Ord 𝑥)
129, 11sylibr 233 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ∈ On)
13 eleq1w 2808 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
14133anbi3d 1438 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ↔ (𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴)))
15 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
16 fveq2 6882 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1715, 16sseq12d 4008 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑦 ⊆ (𝐹𝑦)))
1814, 17imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦))))
19 simpl1 1188 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → 𝐹 Fn 𝐴)
20 simpl2 1189 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → Smo 𝐹)
21 ordtr1 6398 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2221expcomd 416 . . . . . . . . . . . . . 14 (Ord 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
236, 7, 22sylc 65 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (𝑦𝑥𝑦𝐴))
2423imp 406 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → 𝑦𝐴)
25 pm2.27 42 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → 𝑦 ⊆ (𝐹𝑦)))
2619, 20, 24, 25syl3anc 1368 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → 𝑦 ⊆ (𝐹𝑦)))
2726ralimdva 3159 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦)))
2853adant3 1129 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝐴)
29 simp31 1206 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑥𝐴)
3028, 29, 8syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝑥)
31 simp32 1207 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦𝑥)
32 ordelord 6377 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
3330, 31, 32syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝑦)
34 smofvon2 8352 . . . . . . . . . . . . . . . . . . 19 (Smo 𝐹 → (𝐹𝑥) ∈ On)
35343ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑥) ∈ On)
36 eloni 6365 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ On → Ord (𝐹𝑥))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord (𝐹𝑥))
38 simp33 1208 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦 ⊆ (𝐹𝑦))
39 smoel2 8359 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝑥)) → (𝐹𝑦) ∈ (𝐹𝑥))
40393adantr3 1168 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑦) ∈ (𝐹𝑥))
41403impa 1107 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑦) ∈ (𝐹𝑥))
42 ordtr2 6399 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦 ∧ Ord (𝐹𝑥)) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ (𝐹𝑥)) → 𝑦 ∈ (𝐹𝑥)))
4342imp 406 . . . . . . . . . . . . . . . . 17 (((Ord 𝑦 ∧ Ord (𝐹𝑥)) ∧ (𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ (𝐹𝑥))) → 𝑦 ∈ (𝐹𝑥))
4433, 37, 38, 41, 43syl22anc 836 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦 ∈ (𝐹𝑥))
45443expia 1118 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦)) → 𝑦 ∈ (𝐹𝑥)))
46453expd 1350 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥𝐴 → (𝑦𝑥 → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥)))))
47463impia 1114 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (𝑦𝑥 → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥))))
4847imp 406 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥)))
4948ralimdva 3159 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦) → ∀𝑦𝑥 𝑦 ∈ (𝐹𝑥)))
50 dfss3 3963 . . . . . . . . . . 11 (𝑥 ⊆ (𝐹𝑥) ↔ ∀𝑦𝑥 𝑦 ∈ (𝐹𝑥))
5149, 50imbitrrdi 251 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑥)))
5227, 51syldc 48 . . . . . . . . 9 (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)))
5352a1i 11 . . . . . . . 8 (𝑥 ∈ On → (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))))
5418, 53tfis2 7840 . . . . . . 7 (𝑥 ∈ On → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)))
5512, 54mpcom 38 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
56553expia 1118 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥𝐴𝑥 ⊆ (𝐹𝑥)))
5756com12 32 . . . 4 (𝑥𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹𝑥)))
584, 57vtoclga 3558 . . 3 (𝐶𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹𝐶)))
5958com12 32 . 2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝐶𝐴𝐶 ⊆ (𝐹𝐶)))
60593impia 1114 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wss 3941  Ord word 6354  Oncon0 6355   Fn wfn 6529  cfv 6534  Smo wsmo 8341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-ord 6358  df-on 6359  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-smo 8342
This theorem is referenced by:  smocdmdom  8364  oismo  9532
  Copyright terms: Public domain W3C validator