| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) |
| 2 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) |
| 3 | 1, 2 | sseq12d 4017 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 ⊆ (𝐹‘𝑥) ↔ 𝐶 ⊆ (𝐹‘𝐶))) |
| 4 | 3 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐶 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹‘𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹‘𝐶)))) |
| 5 | | smodm2 8395 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| 6 | 5 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) |
| 7 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 8 | | ordelord 6406 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
| 9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
| 10 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 11 | 10 | elon 6393 |
. . . . . . . 8
⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 12 | 9, 11 | sylibr 234 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
| 13 | | eleq1w 2824 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 14 | 13 | 3anbi3d 1444 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) ↔ (𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴))) |
| 15 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 16 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 17 | 15, 16 | sseq12d 4017 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (𝐹‘𝑥) ↔ 𝑦 ⊆ (𝐹‘𝑦))) |
| 18 | 14, 17 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ (𝐹‘𝑦)))) |
| 19 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → 𝐹 Fn 𝐴) |
| 20 | | simpl2 1193 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → Smo 𝐹) |
| 21 | | ordtr1 6427 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 22 | 21 | expcomd 416 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝐴 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
| 23 | 6, 7, 22 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
| 24 | 23 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
| 25 | | pm2.27 42 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ (𝐹‘𝑦)) → 𝑦 ⊆ (𝐹‘𝑦))) |
| 26 | 19, 20, 24, 25 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ (𝐹‘𝑦)) → 𝑦 ⊆ (𝐹‘𝑦))) |
| 27 | 26 | ralimdva 3167 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ (𝐹‘𝑦)) → ∀𝑦 ∈ 𝑥 𝑦 ⊆ (𝐹‘𝑦))) |
| 28 | 5 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → Ord 𝐴) |
| 29 | | simp31 1210 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → 𝑥 ∈ 𝐴) |
| 30 | 28, 29, 8 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → Ord 𝑥) |
| 31 | | simp32 1211 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → 𝑦 ∈ 𝑥) |
| 32 | | ordelord 6406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Ord
𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → Ord 𝑦) |
| 34 | | smofvon2 8396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Smo
𝐹 → (𝐹‘𝑥) ∈ On) |
| 35 | 34 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → (𝐹‘𝑥) ∈ On) |
| 36 | | eloni 6394 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) ∈ On → Ord (𝐹‘𝑥)) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → Ord (𝐹‘𝑥)) |
| 38 | | simp33 1212 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → 𝑦 ⊆ (𝐹‘𝑦)) |
| 39 | | smoel2 8403 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 40 | 39 | 3adantr3 1172 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 41 | 40 | 3impa 1110 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → (𝐹‘𝑦) ∈ (𝐹‘𝑥)) |
| 42 | | ordtr2 6428 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Ord
𝑦 ∧ Ord (𝐹‘𝑥)) → ((𝑦 ⊆ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → 𝑦 ∈ (𝐹‘𝑥))) |
| 43 | 42 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ (((Ord
𝑦 ∧ Ord (𝐹‘𝑥)) ∧ (𝑦 ⊆ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ∈ (𝐹‘𝑥))) → 𝑦 ∈ (𝐹‘𝑥)) |
| 44 | 33, 37, 38, 41, 43 | syl22anc 839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦))) → 𝑦 ∈ (𝐹‘𝑥)) |
| 45 | 44 | 3expia 1122 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ∧ 𝑦 ⊆ (𝐹‘𝑦)) → 𝑦 ∈ (𝐹‘𝑥))) |
| 46 | 45 | 3expd 1354 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → (𝑦 ⊆ (𝐹‘𝑦) → 𝑦 ∈ (𝐹‘𝑥))))) |
| 47 | 46 | 3impia 1118 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → (𝑦 ⊆ (𝐹‘𝑦) → 𝑦 ∈ (𝐹‘𝑥)))) |
| 48 | 47 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ (𝐹‘𝑦) → 𝑦 ∈ (𝐹‘𝑥))) |
| 49 | 48 | ralimdva 3167 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (𝐹‘𝑦) → ∀𝑦 ∈ 𝑥 𝑦 ∈ (𝐹‘𝑥))) |
| 50 | | dfss3 3972 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ (𝐹‘𝑥)) |
| 51 | 49, 50 | imbitrrdi 252 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (𝐹‘𝑦) → 𝑥 ⊆ (𝐹‘𝑥))) |
| 52 | 27, 51 | syldc 48 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ (𝐹‘𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥))) |
| 53 | 52 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ (𝐹‘𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)))) |
| 54 | 18, 53 | tfis2 7878 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥))) |
| 55 | 12, 54 | mpcom 38 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) |
| 56 | 55 | 3expia 1122 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥 ∈ 𝐴 → 𝑥 ⊆ (𝐹‘𝑥))) |
| 57 | 56 | com12 32 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹‘𝑥))) |
| 58 | 4, 57 | vtoclga 3577 |
. . 3
⊢ (𝐶 ∈ 𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹‘𝐶))) |
| 59 | 58 | com12 32 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝐶 ∈ 𝐴 → 𝐶 ⊆ (𝐹‘𝐶))) |
| 60 | 59 | 3impia 1118 |
1
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝐶 ∈ 𝐴) → 𝐶 ⊆ (𝐹‘𝐶)) |