![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smoword | Structured version Visualization version GIF version |
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
Ref | Expression |
---|---|
smoword | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smoord 8363 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐷 ∈ 𝐶 ↔ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) | |
2 | 1 | notbid 318 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
3 | 2 | ancom2s 647 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
4 | smodm2 8353 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
5 | simprl 768 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
6 | ordelord 6379 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
7 | 4, 5, 6 | syl2an2r 682 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐶) |
8 | simprr 770 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) | |
9 | ordelord 6379 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐷 ∈ 𝐴) → Ord 𝐷) | |
10 | 4, 8, 9 | syl2an2r 682 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐷) |
11 | ordtri1 6390 | . . 3 ⊢ ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) | |
12 | 7, 10, 11 | syl2anc 583 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) |
13 | simplr 766 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Smo 𝐹) | |
14 | smofvon2 8354 | . . . 4 ⊢ (Smo 𝐹 → (𝐹‘𝐶) ∈ On) | |
15 | eloni 6367 | . . . 4 ⊢ ((𝐹‘𝐶) ∈ On → Ord (𝐹‘𝐶)) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐶)) |
17 | smofvon2 8354 | . . . 4 ⊢ (Smo 𝐹 → (𝐹‘𝐷) ∈ On) | |
18 | eloni 6367 | . . . 4 ⊢ ((𝐹‘𝐷) ∈ On → Ord (𝐹‘𝐷)) | |
19 | 13, 17, 18 | 3syl 18 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐷)) |
20 | ordtri1 6390 | . . 3 ⊢ ((Ord (𝐹‘𝐶) ∧ Ord (𝐹‘𝐷)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) | |
21 | 16, 19, 20 | syl2anc 583 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
22 | 3, 12, 21 | 3bitr4d 311 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⊆ wss 3943 Ord word 6356 Oncon0 6357 Fn wfn 6531 ‘cfv 6536 Smo wsmo 8343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-ord 6360 df-on 6361 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-smo 8344 |
This theorem is referenced by: cfcoflem 10266 coftr 10267 |
Copyright terms: Public domain | W3C validator |