![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smoword | Structured version Visualization version GIF version |
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
Ref | Expression |
---|---|
smoword | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smoord 8364 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐷 ∈ 𝐶 ↔ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) | |
2 | 1 | notbid 317 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
3 | 2 | ancom2s 648 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
4 | smodm2 8354 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
5 | simprl 769 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
6 | ordelord 6386 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
7 | 4, 5, 6 | syl2an2r 683 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐶) |
8 | simprr 771 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) | |
9 | ordelord 6386 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐷 ∈ 𝐴) → Ord 𝐷) | |
10 | 4, 8, 9 | syl2an2r 683 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐷) |
11 | ordtri1 6397 | . . 3 ⊢ ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) | |
12 | 7, 10, 11 | syl2anc 584 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) |
13 | simplr 767 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Smo 𝐹) | |
14 | smofvon2 8355 | . . . 4 ⊢ (Smo 𝐹 → (𝐹‘𝐶) ∈ On) | |
15 | eloni 6374 | . . . 4 ⊢ ((𝐹‘𝐶) ∈ On → Ord (𝐹‘𝐶)) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐶)) |
17 | smofvon2 8355 | . . . 4 ⊢ (Smo 𝐹 → (𝐹‘𝐷) ∈ On) | |
18 | eloni 6374 | . . . 4 ⊢ ((𝐹‘𝐷) ∈ On → Ord (𝐹‘𝐷)) | |
19 | 13, 17, 18 | 3syl 18 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐷)) |
20 | ordtri1 6397 | . . 3 ⊢ ((Ord (𝐹‘𝐶) ∧ Ord (𝐹‘𝐷)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) | |
21 | 16, 19, 20 | syl2anc 584 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
22 | 3, 12, 21 | 3bitr4d 310 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3948 Ord word 6363 Oncon0 6364 Fn wfn 6538 ‘cfv 6543 Smo wsmo 8344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-smo 8345 |
This theorem is referenced by: cfcoflem 10266 coftr 10267 |
Copyright terms: Public domain | W3C validator |