Proof of Theorem smoword
Step | Hyp | Ref
| Expression |
1 | | smoord 8102 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐷 ∈ 𝐶 ↔ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
2 | 1 | notbid 321 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
3 | 2 | ancom2s 650 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
4 | | smodm2 8092 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
5 | | simprl 771 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) |
6 | | ordelord 6235 |
. . . 4
⊢ ((Ord
𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
7 | 4, 5, 6 | syl2an2r 685 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐶) |
8 | | simprr 773 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) |
9 | | ordelord 6235 |
. . . 4
⊢ ((Ord
𝐴 ∧ 𝐷 ∈ 𝐴) → Ord 𝐷) |
10 | 4, 8, 9 | syl2an2r 685 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐷) |
11 | | ordtri1 6246 |
. . 3
⊢ ((Ord
𝐶 ∧ Ord 𝐷) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) |
12 | 7, 10, 11 | syl2anc 587 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) |
13 | | simplr 769 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Smo 𝐹) |
14 | | smofvon2 8093 |
. . . 4
⊢ (Smo
𝐹 → (𝐹‘𝐶) ∈ On) |
15 | | eloni 6223 |
. . . 4
⊢ ((𝐹‘𝐶) ∈ On → Ord (𝐹‘𝐶)) |
16 | 13, 14, 15 | 3syl 18 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐶)) |
17 | | smofvon2 8093 |
. . . 4
⊢ (Smo
𝐹 → (𝐹‘𝐷) ∈ On) |
18 | | eloni 6223 |
. . . 4
⊢ ((𝐹‘𝐷) ∈ On → Ord (𝐹‘𝐷)) |
19 | 13, 17, 18 | 3syl 18 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐷)) |
20 | | ordtri1 6246 |
. . 3
⊢ ((Ord
(𝐹‘𝐶) ∧ Ord (𝐹‘𝐷)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
21 | 16, 19, 20 | syl2anc 587 |
. 2
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
22 | 3, 12, 21 | 3bitr4d 314 |
1
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |