MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoword Structured version   Visualization version   GIF version

Theorem smoword 8286
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoword (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))

Proof of Theorem smoword
StepHypRef Expression
1 smoord 8285 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷𝐶 ↔ (𝐹𝐷) ∈ (𝐹𝐶)))
21notbid 318 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
32ancom2s 650 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
4 smodm2 8275 . . . 4 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
5 simprl 770 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
6 ordelord 6328 . . . 4 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
74, 5, 6syl2an2r 685 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
8 simprr 772 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
9 ordelord 6328 . . . 4 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
104, 8, 9syl2an2r 685 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
11 ordtri1 6339 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
127, 10, 11syl2anc 584 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
13 simplr 768 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Smo 𝐹)
14 smofvon2 8276 . . . 4 (Smo 𝐹 → (𝐹𝐶) ∈ On)
15 eloni 6316 . . . 4 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
1613, 14, 153syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
17 smofvon2 8276 . . . 4 (Smo 𝐹 → (𝐹𝐷) ∈ On)
18 eloni 6316 . . . 4 ((𝐹𝐷) ∈ On → Ord (𝐹𝐷))
1913, 17, 183syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐷))
20 ordtri1 6339 . . 3 ((Ord (𝐹𝐶) ∧ Ord (𝐹𝐷)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
2116, 19, 20syl2anc 584 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
223, 12, 213bitr4d 311 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  wss 3897  Ord word 6305  Oncon0 6306   Fn wfn 6476  cfv 6481  Smo wsmo 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-smo 8266
This theorem is referenced by:  cfcoflem  10163  coftr  10164
  Copyright terms: Public domain W3C validator