MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoword Structured version   Visualization version   GIF version

Theorem smoword 8364
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoword (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))

Proof of Theorem smoword
StepHypRef Expression
1 smoord 8363 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷𝐶 ↔ (𝐹𝐷) ∈ (𝐹𝐶)))
21notbid 318 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
32ancom2s 647 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷𝐶 ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
4 smodm2 8353 . . . 4 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
5 simprl 768 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
6 ordelord 6379 . . . 4 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
74, 5, 6syl2an2r 682 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
8 simprr 770 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
9 ordelord 6379 . . . 4 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
104, 8, 9syl2an2r 682 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
11 ordtri1 6390 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
127, 10, 11syl2anc 583 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷𝐶))
13 simplr 766 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Smo 𝐹)
14 smofvon2 8354 . . . 4 (Smo 𝐹 → (𝐹𝐶) ∈ On)
15 eloni 6367 . . . 4 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
1613, 14, 153syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
17 smofvon2 8354 . . . 4 (Smo 𝐹 → (𝐹𝐷) ∈ On)
18 eloni 6367 . . . 4 ((𝐹𝐷) ∈ On → Ord (𝐹𝐷))
1913, 17, 183syl 18 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐷))
20 ordtri1 6390 . . 3 ((Ord (𝐹𝐶) ∧ Ord (𝐹𝐷)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
2116, 19, 20syl2anc 583 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ ¬ (𝐹𝐷) ∈ (𝐹𝐶)))
223, 12, 213bitr4d 311 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ⊆ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  wss 3943  Ord word 6356  Oncon0 6357   Fn wfn 6531  cfv 6536  Smo wsmo 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-ord 6360  df-on 6361  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-smo 8344
This theorem is referenced by:  cfcoflem  10266  coftr  10267
  Copyright terms: Public domain W3C validator