![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smoword | Structured version Visualization version GIF version |
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
Ref | Expression |
---|---|
smoword | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smoord 8392 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐷 ∈ 𝐶 ↔ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) | |
2 | 1 | notbid 317 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
3 | 2 | ancom2s 648 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐷 ∈ 𝐶 ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
4 | smodm2 8382 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
5 | simprl 769 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
6 | ordelord 6396 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
7 | 4, 5, 6 | syl2an2r 683 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐶) |
8 | simprr 771 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) | |
9 | ordelord 6396 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐷 ∈ 𝐴) → Ord 𝐷) | |
10 | 4, 8, 9 | syl2an2r 683 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord 𝐷) |
11 | ordtri1 6407 | . . 3 ⊢ ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) | |
12 | 7, 10, 11 | syl2anc 582 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶)) |
13 | simplr 767 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Smo 𝐹) | |
14 | smofvon2 8383 | . . . 4 ⊢ (Smo 𝐹 → (𝐹‘𝐶) ∈ On) | |
15 | eloni 6384 | . . . 4 ⊢ ((𝐹‘𝐶) ∈ On → Ord (𝐹‘𝐶)) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐶)) |
17 | smofvon2 8383 | . . . 4 ⊢ (Smo 𝐹 → (𝐹‘𝐷) ∈ On) | |
18 | eloni 6384 | . . . 4 ⊢ ((𝐹‘𝐷) ∈ On → Ord (𝐹‘𝐷)) | |
19 | 13, 17, 18 | 3syl 18 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → Ord (𝐹‘𝐷)) |
20 | ordtri1 6407 | . . 3 ⊢ ((Ord (𝐹‘𝐶) ∧ Ord (𝐹‘𝐷)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) | |
21 | 16, 19, 20 | syl2anc 582 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) ⊆ (𝐹‘𝐷) ↔ ¬ (𝐹‘𝐷) ∈ (𝐹‘𝐶))) |
22 | 3, 12, 21 | 3bitr4d 310 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3949 Ord word 6373 Oncon0 6374 Fn wfn 6548 ‘cfv 6553 Smo wsmo 8372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-ord 6377 df-on 6378 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-smo 8373 |
This theorem is referenced by: cfcoflem 10303 coftr 10304 |
Copyright terms: Public domain | W3C validator |