MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coftr Structured version   Visualization version   GIF version

Theorem coftr 9960
Description: If there is a cofinal map from 𝐵 to 𝐴 and another from 𝐶 to 𝐴, then there is also a cofinal map from 𝐶 to 𝐵. Proposition 11.9 of [TakeutiZaring] p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof 9961. (Contributed by Mario Carneiro, 16-Mar-2013.)
Hypothesis
Ref Expression
coftr.1 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
Assertion
Ref Expression
coftr (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑠,𝑤,𝑥   𝑧,𝐴,𝑓,𝑔,𝑠,𝑤   𝐵,𝑓,𝑔,,𝑠,𝑤   𝐵,𝑛,𝑡,𝑓,𝑔,𝑤   𝑥,𝐵,𝑦,𝑓,𝑔,𝑠,𝑤   𝐶,𝑓,𝑔,,𝑠,𝑤   𝑡,𝐶   𝑧,𝐶   ,𝐻,𝑠,𝑤   𝑦,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑡,,𝑛)   𝐵(𝑧)   𝐶(𝑥,𝑦,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑛)

Proof of Theorem coftr
StepHypRef Expression
1 fdm 6593 . . . . . . . 8 (𝑔:𝐶𝐴 → dom 𝑔 = 𝐶)
2 vex 3426 . . . . . . . . 9 𝑔 ∈ V
32dmex 7732 . . . . . . . 8 dom 𝑔 ∈ V
41, 3eqeltrrdi 2848 . . . . . . 7 (𝑔:𝐶𝐴𝐶 ∈ V)
5 coftr.1 . . . . . . . . 9 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
6 fveq2 6756 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (𝑔𝑡) = (𝑔𝑤))
76sseq1d 3948 . . . . . . . . . . . 12 (𝑡 = 𝑤 → ((𝑔𝑡) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑛)))
87rabbidv 3404 . . . . . . . . . . 11 (𝑡 = 𝑤 → {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
98inteqd 4881 . . . . . . . . . 10 (𝑡 = 𝑤 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
109cbvmptv 5183 . . . . . . . . 9 (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)}) = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
115, 10eqtri 2766 . . . . . . . 8 𝐻 = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
12 mptexg 7079 . . . . . . . 8 (𝐶 ∈ V → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}) ∈ V)
1311, 12eqeltrid 2843 . . . . . . 7 (𝐶 ∈ V → 𝐻 ∈ V)
144, 13syl 17 . . . . . 6 (𝑔:𝐶𝐴𝐻 ∈ V)
1514ad2antrl 724 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻 ∈ V)
16 ffn 6584 . . . . . . . . 9 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
17 smodm2 8157 . . . . . . . . 9 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → Ord 𝐵)
1816, 17sylan 579 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → Ord 𝐵)
19183adant3 1130 . . . . . . 7 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → Ord 𝐵)
2019adantr 480 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Ord 𝐵)
21 simpl3 1191 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
22 simprl 767 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑔:𝐶𝐴)
23 simpl1 1189 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → Ord 𝐵)
24 simpl2 1190 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
25 ffvelrn 6941 . . . . . . . . . 10 ((𝑔:𝐶𝐴𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
26253ad2antl3 1185 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
27 sseq1 3942 . . . . . . . . . . 11 (𝑥 = (𝑔𝑤) → (𝑥 ⊆ (𝑓𝑦) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
2827rexbidv 3225 . . . . . . . . . 10 (𝑥 = (𝑔𝑤) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
2928rspccv 3549 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ((𝑔𝑤) ∈ 𝐴 → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
3024, 26, 29sylc 65 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦))
31 ssrab2 4009 . . . . . . . . . . . . 13 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝐵
32 ordsson 7610 . . . . . . . . . . . . 13 (Ord 𝐵𝐵 ⊆ On)
3331, 32sstrid 3928 . . . . . . . . . . . 12 (Ord 𝐵 → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On)
34 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑓𝑛) = (𝑓𝑦))
3534sseq2d 3949 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑔𝑤) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
3635rspcev 3552 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
37 rabn0 4316 . . . . . . . . . . . . 13 ({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅ ↔ ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
3836, 37sylibr 233 . . . . . . . . . . . 12 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅)
39 oninton 7622 . . . . . . . . . . . 12 (({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On ∧ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
4033, 38, 39syl2an 595 . . . . . . . . . . 11 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
41 eloni 6261 . . . . . . . . . . 11 ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
4240, 41syl 17 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
43 simpl 482 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord 𝐵)
4435intminss 4902 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
4544adantl 481 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
46 simprl 767 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → 𝑦𝐵)
47 ordtr2 6295 . . . . . . . . . . 11 ((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) → (( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
4847imp 406 . . . . . . . . . 10 (((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) ∧ ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
4942, 43, 45, 46, 48syl22anc 835 . . . . . . . . 9 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5049rexlimdvaa 3213 . . . . . . . 8 (Ord 𝐵 → (∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
5123, 30, 50sylc 65 . . . . . . 7 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5251, 11fmptd 6970 . . . . . 6 ((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) → 𝐻:𝐶𝐵)
5320, 21, 22, 52syl3anc 1369 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻:𝐶𝐵)
54 simprr 769 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))
55 simpl1 1189 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓:𝐵𝐴)
56 ffvelrn 6941 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑠𝐵) → (𝑓𝑠) ∈ 𝐴)
57 sseq1 3942 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑠) → (𝑧 ⊆ (𝑔𝑤) ↔ (𝑓𝑠) ⊆ (𝑔𝑤)))
5857rexbidv 3225 . . . . . . . . . . 11 (𝑧 = (𝑓𝑠) → (∃𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ↔ ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
5958rspccv 3549 . . . . . . . . . 10 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓𝑠) ∈ 𝐴 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6056, 59syl5 34 . . . . . . . . 9 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓:𝐵𝐴𝑠𝐵) → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6160expdimp 452 . . . . . . . 8 ((∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ∧ 𝑓:𝐵𝐴) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6254, 55, 61syl2anc 583 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6355, 16syl 17 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓 Fn 𝐵)
64 simpl2 1190 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Smo 𝑓)
65 simpr 484 . . . . . . . . . . . . . . . 16 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑤𝐶)
6665, 51jca 511 . . . . . . . . . . . . . . 15 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
6735elrab 3617 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)))
68 sstr2 3924 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → (𝑓𝑠) ⊆ (𝑓𝑦)))
69 smoword 8168 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → (𝑠𝑦 ↔ (𝑓𝑠) ⊆ (𝑓𝑦)))
7069biimprd 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑓𝑦) → 𝑠𝑦))
7168, 70syl9r 78 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦)))
7271expr 456 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (𝑦𝐵 → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7372com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (𝑦𝐵 → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7473imp4b 421 . . . . . . . . . . . . . . . . . . 19 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → 𝑠𝑦))
7567, 74syl5bi 241 . . . . . . . . . . . . . . . . . 18 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} → 𝑠𝑦))
7675ralrimiv 3106 . . . . . . . . . . . . . . . . 17 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
77 ssint 4892 . . . . . . . . . . . . . . . . 17 (𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
7876, 77sylibr 233 . . . . . . . . . . . . . . . 16 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
799, 5fvmptg 6855 . . . . . . . . . . . . . . . . 17 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝐻𝑤) = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
8079sseq2d 3949 . . . . . . . . . . . . . . . 16 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝑠 ⊆ (𝐻𝑤) ↔ 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}))
8178, 80syl5ibrcom 246 . . . . . . . . . . . . . . 15 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → 𝑠 ⊆ (𝐻𝑤)))
8266, 81syl5 34 . . . . . . . . . . . . . 14 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤)))
8382ex 412 . . . . . . . . . . . . 13 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤))))
8483com23 86 . . . . . . . . . . . 12 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8584expdimp 452 . . . . . . . . . . 11 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (𝑤𝐶 → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8685reximdvai 3199 . . . . . . . . . 10 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8786ancoms 458 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8887expr 456 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ (𝑓 Fn 𝐵 ∧ Smo 𝑓)) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
8920, 21, 22, 63, 64, 88syl32anc 1376 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9062, 89mpdd 43 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9190ralrimiv 3106 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))
92 feq1 6565 . . . . . . . 8 ( = 𝐻 → (:𝐶𝐵𝐻:𝐶𝐵))
93 fveq1 6755 . . . . . . . . . . 11 ( = 𝐻 → (𝑤) = (𝐻𝑤))
9493sseq2d 3949 . . . . . . . . . 10 ( = 𝐻 → (𝑠 ⊆ (𝑤) ↔ 𝑠 ⊆ (𝐻𝑤)))
9594rexbidv 3225 . . . . . . . . 9 ( = 𝐻 → (∃𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9695ralbidv 3120 . . . . . . . 8 ( = 𝐻 → (∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9792, 96anbi12d 630 . . . . . . 7 ( = 𝐻 → ((:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)) ↔ (𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9897spcegv 3526 . . . . . 6 (𝐻 ∈ V → ((𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
99983impib 1114 . . . . 5 ((𝐻 ∈ V ∧ 𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
10015, 53, 91, 99syl3anc 1369 . . . 4 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
101100ex 412 . . 3 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ((𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
102101exlimdv 1937 . 2 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
103102exlimiv 1934 1 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   cint 4876  cmpt 5153  dom cdm 5580  Ord word 6250  Oncon0 6251   Fn wfn 6413  wf 6414  cfv 6418  Smo wsmo 8147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-smo 8148
This theorem is referenced by:  cfcof  9961
  Copyright terms: Public domain W3C validator