MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coftr Structured version   Visualization version   GIF version

Theorem coftr 9684
Description: If there is a cofinal map from 𝐵 to 𝐴 and another from 𝐶 to 𝐴, then there is also a cofinal map from 𝐶 to 𝐵. Proposition 11.9 of [TakeutiZaring] p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof 9685. (Contributed by Mario Carneiro, 16-Mar-2013.)
Hypothesis
Ref Expression
coftr.1 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
Assertion
Ref Expression
coftr (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑠,𝑤,𝑥   𝑧,𝐴,𝑓,𝑔,𝑠,𝑤   𝐵,𝑓,𝑔,,𝑠,𝑤   𝐵,𝑛,𝑡,𝑓,𝑔,𝑤   𝑥,𝐵,𝑦,𝑓,𝑔,𝑠,𝑤   𝐶,𝑓,𝑔,,𝑠,𝑤   𝑡,𝐶   𝑧,𝐶   ,𝐻,𝑠,𝑤   𝑦,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑡,,𝑛)   𝐵(𝑧)   𝐶(𝑥,𝑦,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑛)

Proof of Theorem coftr
StepHypRef Expression
1 fdm 6502 . . . . . . . 8 (𝑔:𝐶𝐴 → dom 𝑔 = 𝐶)
2 vex 3472 . . . . . . . . 9 𝑔 ∈ V
32dmex 7602 . . . . . . . 8 dom 𝑔 ∈ V
41, 3eqeltrrdi 2923 . . . . . . 7 (𝑔:𝐶𝐴𝐶 ∈ V)
5 coftr.1 . . . . . . . . 9 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
6 fveq2 6652 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (𝑔𝑡) = (𝑔𝑤))
76sseq1d 3973 . . . . . . . . . . . 12 (𝑡 = 𝑤 → ((𝑔𝑡) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑛)))
87rabbidv 3455 . . . . . . . . . . 11 (𝑡 = 𝑤 → {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
98inteqd 4856 . . . . . . . . . 10 (𝑡 = 𝑤 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
109cbvmptv 5145 . . . . . . . . 9 (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)}) = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
115, 10eqtri 2845 . . . . . . . 8 𝐻 = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
12 mptexg 6966 . . . . . . . 8 (𝐶 ∈ V → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}) ∈ V)
1311, 12eqeltrid 2918 . . . . . . 7 (𝐶 ∈ V → 𝐻 ∈ V)
144, 13syl 17 . . . . . 6 (𝑔:𝐶𝐴𝐻 ∈ V)
1514ad2antrl 727 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻 ∈ V)
16 ffn 6494 . . . . . . . . 9 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
17 smodm2 7979 . . . . . . . . 9 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → Ord 𝐵)
1816, 17sylan 583 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → Ord 𝐵)
19183adant3 1129 . . . . . . 7 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → Ord 𝐵)
2019adantr 484 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Ord 𝐵)
21 simpl3 1190 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
22 simprl 770 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑔:𝐶𝐴)
23 simpl1 1188 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → Ord 𝐵)
24 simpl2 1189 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
25 ffvelrn 6831 . . . . . . . . . 10 ((𝑔:𝐶𝐴𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
26253ad2antl3 1184 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
27 sseq1 3967 . . . . . . . . . . 11 (𝑥 = (𝑔𝑤) → (𝑥 ⊆ (𝑓𝑦) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
2827rexbidv 3283 . . . . . . . . . 10 (𝑥 = (𝑔𝑤) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
2928rspccv 3595 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ((𝑔𝑤) ∈ 𝐴 → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
3024, 26, 29sylc 65 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦))
31 ssrab2 4031 . . . . . . . . . . . . 13 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝐵
32 ordsson 7489 . . . . . . . . . . . . 13 (Ord 𝐵𝐵 ⊆ On)
3331, 32sstrid 3953 . . . . . . . . . . . 12 (Ord 𝐵 → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On)
34 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑓𝑛) = (𝑓𝑦))
3534sseq2d 3974 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑔𝑤) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
3635rspcev 3598 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
37 rabn0 4311 . . . . . . . . . . . . 13 ({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅ ↔ ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
3836, 37sylibr 237 . . . . . . . . . . . 12 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅)
39 oninton 7500 . . . . . . . . . . . 12 (({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On ∧ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
4033, 38, 39syl2an 598 . . . . . . . . . . 11 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
41 eloni 6179 . . . . . . . . . . 11 ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
4240, 41syl 17 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
43 simpl 486 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord 𝐵)
4435intminss 4877 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
4544adantl 485 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
46 simprl 770 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → 𝑦𝐵)
47 ordtr2 6213 . . . . . . . . . . 11 ((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) → (( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
4847imp 410 . . . . . . . . . 10 (((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) ∧ ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
4942, 43, 45, 46, 48syl22anc 837 . . . . . . . . 9 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5049rexlimdvaa 3271 . . . . . . . 8 (Ord 𝐵 → (∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
5123, 30, 50sylc 65 . . . . . . 7 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5251, 11fmptd 6860 . . . . . 6 ((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) → 𝐻:𝐶𝐵)
5320, 21, 22, 52syl3anc 1368 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻:𝐶𝐵)
54 simprr 772 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))
55 simpl1 1188 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓:𝐵𝐴)
56 ffvelrn 6831 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑠𝐵) → (𝑓𝑠) ∈ 𝐴)
57 sseq1 3967 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑠) → (𝑧 ⊆ (𝑔𝑤) ↔ (𝑓𝑠) ⊆ (𝑔𝑤)))
5857rexbidv 3283 . . . . . . . . . . 11 (𝑧 = (𝑓𝑠) → (∃𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ↔ ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
5958rspccv 3595 . . . . . . . . . 10 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓𝑠) ∈ 𝐴 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6056, 59syl5 34 . . . . . . . . 9 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓:𝐵𝐴𝑠𝐵) → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6160expdimp 456 . . . . . . . 8 ((∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ∧ 𝑓:𝐵𝐴) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6254, 55, 61syl2anc 587 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6355, 16syl 17 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓 Fn 𝐵)
64 simpl2 1189 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Smo 𝑓)
65 simpr 488 . . . . . . . . . . . . . . . 16 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑤𝐶)
6665, 51jca 515 . . . . . . . . . . . . . . 15 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
6735elrab 3655 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)))
68 sstr2 3949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → (𝑓𝑠) ⊆ (𝑓𝑦)))
69 smoword 7990 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → (𝑠𝑦 ↔ (𝑓𝑠) ⊆ (𝑓𝑦)))
7069biimprd 251 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑓𝑦) → 𝑠𝑦))
7168, 70syl9r 78 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦)))
7271expr 460 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (𝑦𝐵 → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7372com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (𝑦𝐵 → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7473imp4b 425 . . . . . . . . . . . . . . . . . . 19 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → 𝑠𝑦))
7567, 74syl5bi 245 . . . . . . . . . . . . . . . . . 18 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} → 𝑠𝑦))
7675ralrimiv 3173 . . . . . . . . . . . . . . . . 17 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
77 ssint 4867 . . . . . . . . . . . . . . . . 17 (𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
7876, 77sylibr 237 . . . . . . . . . . . . . . . 16 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
799, 5fvmptg 6748 . . . . . . . . . . . . . . . . 17 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝐻𝑤) = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
8079sseq2d 3974 . . . . . . . . . . . . . . . 16 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝑠 ⊆ (𝐻𝑤) ↔ 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}))
8178, 80syl5ibrcom 250 . . . . . . . . . . . . . . 15 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → 𝑠 ⊆ (𝐻𝑤)))
8266, 81syl5 34 . . . . . . . . . . . . . 14 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤)))
8382ex 416 . . . . . . . . . . . . 13 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤))))
8483com23 86 . . . . . . . . . . . 12 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8584expdimp 456 . . . . . . . . . . 11 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (𝑤𝐶 → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8685reximdvai 3258 . . . . . . . . . 10 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8786ancoms 462 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8887expr 460 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ (𝑓 Fn 𝐵 ∧ Smo 𝑓)) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
8920, 21, 22, 63, 64, 88syl32anc 1375 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9062, 89mpdd 43 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9190ralrimiv 3173 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))
92 feq1 6475 . . . . . . . 8 ( = 𝐻 → (:𝐶𝐵𝐻:𝐶𝐵))
93 fveq1 6651 . . . . . . . . . . 11 ( = 𝐻 → (𝑤) = (𝐻𝑤))
9493sseq2d 3974 . . . . . . . . . 10 ( = 𝐻 → (𝑠 ⊆ (𝑤) ↔ 𝑠 ⊆ (𝐻𝑤)))
9594rexbidv 3283 . . . . . . . . 9 ( = 𝐻 → (∃𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9695ralbidv 3187 . . . . . . . 8 ( = 𝐻 → (∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9792, 96anbi12d 633 . . . . . . 7 ( = 𝐻 → ((:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)) ↔ (𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9897spcegv 3572 . . . . . 6 (𝐻 ∈ V → ((𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
99983impib 1113 . . . . 5 ((𝐻 ∈ V ∧ 𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
10015, 53, 91, 99syl3anc 1368 . . . 4 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
101100ex 416 . . 3 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ((𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
102101exlimdv 1934 . 2 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
103102exlimiv 1931 1 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2114  wne 3011  wral 3130  wrex 3131  {crab 3134  Vcvv 3469  wss 3908  c0 4265   cint 4851  cmpt 5122  dom cdm 5532  Ord word 6168  Oncon0 6169   Fn wfn 6329  wf 6330  cfv 6334  Smo wsmo 7969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-ord 6172  df-on 6173  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-smo 7970
This theorem is referenced by:  cfcof  9685
  Copyright terms: Public domain W3C validator