MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coftr Structured version   Visualization version   GIF version

Theorem coftr 9689
Description: If there is a cofinal map from 𝐵 to 𝐴 and another from 𝐶 to 𝐴, then there is also a cofinal map from 𝐶 to 𝐵. Proposition 11.9 of [TakeutiZaring] p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof 9690. (Contributed by Mario Carneiro, 16-Mar-2013.)
Hypothesis
Ref Expression
coftr.1 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
Assertion
Ref Expression
coftr (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑠,𝑤,𝑥   𝑧,𝐴,𝑓,𝑔,𝑠,𝑤   𝐵,𝑓,𝑔,,𝑠,𝑤   𝐵,𝑛,𝑡,𝑓,𝑔,𝑤   𝑥,𝐵,𝑦,𝑓,𝑔,𝑠,𝑤   𝐶,𝑓,𝑔,,𝑠,𝑤   𝑡,𝐶   𝑧,𝐶   ,𝐻,𝑠,𝑤   𝑦,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑡,,𝑛)   𝐵(𝑧)   𝐶(𝑥,𝑦,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑛)

Proof of Theorem coftr
StepHypRef Expression
1 fdm 6516 . . . . . . . 8 (𝑔:𝐶𝐴 → dom 𝑔 = 𝐶)
2 vex 3497 . . . . . . . . 9 𝑔 ∈ V
32dmex 7610 . . . . . . . 8 dom 𝑔 ∈ V
41, 3eqeltrrdi 2922 . . . . . . 7 (𝑔:𝐶𝐴𝐶 ∈ V)
5 coftr.1 . . . . . . . . 9 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
6 fveq2 6664 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (𝑔𝑡) = (𝑔𝑤))
76sseq1d 3997 . . . . . . . . . . . 12 (𝑡 = 𝑤 → ((𝑔𝑡) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑛)))
87rabbidv 3480 . . . . . . . . . . 11 (𝑡 = 𝑤 → {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
98inteqd 4873 . . . . . . . . . 10 (𝑡 = 𝑤 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
109cbvmptv 5161 . . . . . . . . 9 (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)}) = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
115, 10eqtri 2844 . . . . . . . 8 𝐻 = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
12 mptexg 6978 . . . . . . . 8 (𝐶 ∈ V → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}) ∈ V)
1311, 12eqeltrid 2917 . . . . . . 7 (𝐶 ∈ V → 𝐻 ∈ V)
144, 13syl 17 . . . . . 6 (𝑔:𝐶𝐴𝐻 ∈ V)
1514ad2antrl 726 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻 ∈ V)
16 ffn 6508 . . . . . . . . 9 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
17 smodm2 7986 . . . . . . . . 9 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → Ord 𝐵)
1816, 17sylan 582 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → Ord 𝐵)
19183adant3 1128 . . . . . . 7 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → Ord 𝐵)
2019adantr 483 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Ord 𝐵)
21 simpl3 1189 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
22 simprl 769 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑔:𝐶𝐴)
23 simpl1 1187 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → Ord 𝐵)
24 simpl2 1188 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
25 ffvelrn 6843 . . . . . . . . . 10 ((𝑔:𝐶𝐴𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
26253ad2antl3 1183 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
27 sseq1 3991 . . . . . . . . . . 11 (𝑥 = (𝑔𝑤) → (𝑥 ⊆ (𝑓𝑦) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
2827rexbidv 3297 . . . . . . . . . 10 (𝑥 = (𝑔𝑤) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
2928rspccv 3619 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ((𝑔𝑤) ∈ 𝐴 → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
3024, 26, 29sylc 65 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦))
31 ssrab2 4055 . . . . . . . . . . . . 13 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝐵
32 ordsson 7498 . . . . . . . . . . . . 13 (Ord 𝐵𝐵 ⊆ On)
3331, 32sstrid 3977 . . . . . . . . . . . 12 (Ord 𝐵 → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On)
34 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑓𝑛) = (𝑓𝑦))
3534sseq2d 3998 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑔𝑤) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
3635rspcev 3622 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
37 rabn0 4338 . . . . . . . . . . . . 13 ({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅ ↔ ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
3836, 37sylibr 236 . . . . . . . . . . . 12 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅)
39 oninton 7509 . . . . . . . . . . . 12 (({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On ∧ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
4033, 38, 39syl2an 597 . . . . . . . . . . 11 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
41 eloni 6195 . . . . . . . . . . 11 ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
4240, 41syl 17 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
43 simpl 485 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord 𝐵)
4435intminss 4894 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
4544adantl 484 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
46 simprl 769 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → 𝑦𝐵)
47 ordtr2 6229 . . . . . . . . . . 11 ((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) → (( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
4847imp 409 . . . . . . . . . 10 (((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) ∧ ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
4942, 43, 45, 46, 48syl22anc 836 . . . . . . . . 9 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5049rexlimdvaa 3285 . . . . . . . 8 (Ord 𝐵 → (∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
5123, 30, 50sylc 65 . . . . . . 7 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5251, 11fmptd 6872 . . . . . 6 ((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) → 𝐻:𝐶𝐵)
5320, 21, 22, 52syl3anc 1367 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻:𝐶𝐵)
54 simprr 771 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))
55 simpl1 1187 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓:𝐵𝐴)
56 ffvelrn 6843 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑠𝐵) → (𝑓𝑠) ∈ 𝐴)
57 sseq1 3991 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑠) → (𝑧 ⊆ (𝑔𝑤) ↔ (𝑓𝑠) ⊆ (𝑔𝑤)))
5857rexbidv 3297 . . . . . . . . . . 11 (𝑧 = (𝑓𝑠) → (∃𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ↔ ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
5958rspccv 3619 . . . . . . . . . 10 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓𝑠) ∈ 𝐴 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6056, 59syl5 34 . . . . . . . . 9 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓:𝐵𝐴𝑠𝐵) → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6160expdimp 455 . . . . . . . 8 ((∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ∧ 𝑓:𝐵𝐴) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6254, 55, 61syl2anc 586 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6355, 16syl 17 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓 Fn 𝐵)
64 simpl2 1188 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Smo 𝑓)
65 simpr 487 . . . . . . . . . . . . . . . 16 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑤𝐶)
6665, 51jca 514 . . . . . . . . . . . . . . 15 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
6735elrab 3679 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)))
68 sstr2 3973 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → (𝑓𝑠) ⊆ (𝑓𝑦)))
69 smoword 7997 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → (𝑠𝑦 ↔ (𝑓𝑠) ⊆ (𝑓𝑦)))
7069biimprd 250 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑓𝑦) → 𝑠𝑦))
7168, 70syl9r 78 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦)))
7271expr 459 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (𝑦𝐵 → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7372com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (𝑦𝐵 → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7473imp4b 424 . . . . . . . . . . . . . . . . . . 19 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → 𝑠𝑦))
7567, 74syl5bi 244 . . . . . . . . . . . . . . . . . 18 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} → 𝑠𝑦))
7675ralrimiv 3181 . . . . . . . . . . . . . . . . 17 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
77 ssint 4884 . . . . . . . . . . . . . . . . 17 (𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
7876, 77sylibr 236 . . . . . . . . . . . . . . . 16 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
799, 5fvmptg 6760 . . . . . . . . . . . . . . . . 17 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝐻𝑤) = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
8079sseq2d 3998 . . . . . . . . . . . . . . . 16 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝑠 ⊆ (𝐻𝑤) ↔ 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}))
8178, 80syl5ibrcom 249 . . . . . . . . . . . . . . 15 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → 𝑠 ⊆ (𝐻𝑤)))
8266, 81syl5 34 . . . . . . . . . . . . . 14 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤)))
8382ex 415 . . . . . . . . . . . . 13 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤))))
8483com23 86 . . . . . . . . . . . 12 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8584expdimp 455 . . . . . . . . . . 11 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (𝑤𝐶 → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8685reximdvai 3272 . . . . . . . . . 10 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8786ancoms 461 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8887expr 459 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ (𝑓 Fn 𝐵 ∧ Smo 𝑓)) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
8920, 21, 22, 63, 64, 88syl32anc 1374 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9062, 89mpdd 43 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9190ralrimiv 3181 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))
92 feq1 6489 . . . . . . . 8 ( = 𝐻 → (:𝐶𝐵𝐻:𝐶𝐵))
93 fveq1 6663 . . . . . . . . . . 11 ( = 𝐻 → (𝑤) = (𝐻𝑤))
9493sseq2d 3998 . . . . . . . . . 10 ( = 𝐻 → (𝑠 ⊆ (𝑤) ↔ 𝑠 ⊆ (𝐻𝑤)))
9594rexbidv 3297 . . . . . . . . 9 ( = 𝐻 → (∃𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9695ralbidv 3197 . . . . . . . 8 ( = 𝐻 → (∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9792, 96anbi12d 632 . . . . . . 7 ( = 𝐻 → ((:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)) ↔ (𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9897spcegv 3596 . . . . . 6 (𝐻 ∈ V → ((𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
99983impib 1112 . . . . 5 ((𝐻 ∈ V ∧ 𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
10015, 53, 91, 99syl3anc 1367 . . . 4 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
101100ex 415 . . 3 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ((𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
102101exlimdv 1930 . 2 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
103102exlimiv 1927 1 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290   cint 4868  cmpt 5138  dom cdm 5549  Ord word 6184  Oncon0 6185   Fn wfn 6344  wf 6345  cfv 6349  Smo wsmo 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-smo 7977
This theorem is referenced by:  cfcof  9690
  Copyright terms: Public domain W3C validator