MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coftr Structured version   Visualization version   GIF version

Theorem coftr 10342
Description: If there is a cofinal map from 𝐵 to 𝐴 and another from 𝐶 to 𝐴, then there is also a cofinal map from 𝐶 to 𝐵. Proposition 11.9 of [TakeutiZaring] p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof 10343. (Contributed by Mario Carneiro, 16-Mar-2013.)
Hypothesis
Ref Expression
coftr.1 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
Assertion
Ref Expression
coftr (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑠,𝑤,𝑥   𝑧,𝐴,𝑓,𝑔,𝑠,𝑤   𝐵,𝑓,𝑔,,𝑠,𝑤   𝐵,𝑛,𝑡,𝑓,𝑔,𝑤   𝑥,𝐵,𝑦,𝑓,𝑔,𝑠,𝑤   𝐶,𝑓,𝑔,,𝑠,𝑤   𝑡,𝐶   𝑧,𝐶   ,𝐻,𝑠,𝑤   𝑦,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑡,,𝑛)   𝐵(𝑧)   𝐶(𝑥,𝑦,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑛)

Proof of Theorem coftr
StepHypRef Expression
1 fdm 6756 . . . . . . . 8 (𝑔:𝐶𝐴 → dom 𝑔 = 𝐶)
2 vex 3492 . . . . . . . . 9 𝑔 ∈ V
32dmex 7949 . . . . . . . 8 dom 𝑔 ∈ V
41, 3eqeltrrdi 2853 . . . . . . 7 (𝑔:𝐶𝐴𝐶 ∈ V)
5 coftr.1 . . . . . . . . 9 𝐻 = (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)})
6 fveq2 6920 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (𝑔𝑡) = (𝑔𝑤))
76sseq1d 4040 . . . . . . . . . . . 12 (𝑡 = 𝑤 → ((𝑔𝑡) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑛)))
87rabbidv 3451 . . . . . . . . . . 11 (𝑡 = 𝑤 → {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
98inteqd 4975 . . . . . . . . . 10 (𝑡 = 𝑤 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)} = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
109cbvmptv 5279 . . . . . . . . 9 (𝑡𝐶 {𝑛𝐵 ∣ (𝑔𝑡) ⊆ (𝑓𝑛)}) = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
115, 10eqtri 2768 . . . . . . . 8 𝐻 = (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
12 mptexg 7258 . . . . . . . 8 (𝐶 ∈ V → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}) ∈ V)
1311, 12eqeltrid 2848 . . . . . . 7 (𝐶 ∈ V → 𝐻 ∈ V)
144, 13syl 17 . . . . . 6 (𝑔:𝐶𝐴𝐻 ∈ V)
1514ad2antrl 727 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻 ∈ V)
16 ffn 6747 . . . . . . . . 9 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
17 smodm2 8411 . . . . . . . . 9 ((𝑓 Fn 𝐵 ∧ Smo 𝑓) → Ord 𝐵)
1816, 17sylan 579 . . . . . . . 8 ((𝑓:𝐵𝐴 ∧ Smo 𝑓) → Ord 𝐵)
19183adant3 1132 . . . . . . 7 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → Ord 𝐵)
2019adantr 480 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Ord 𝐵)
21 simpl3 1193 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
22 simprl 770 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑔:𝐶𝐴)
23 simpl1 1191 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → Ord 𝐵)
24 simpl2 1192 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦))
25 ffvelcdm 7115 . . . . . . . . . 10 ((𝑔:𝐶𝐴𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
26253ad2antl3 1187 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑔𝑤) ∈ 𝐴)
27 sseq1 4034 . . . . . . . . . . 11 (𝑥 = (𝑔𝑤) → (𝑥 ⊆ (𝑓𝑦) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
2827rexbidv 3185 . . . . . . . . . 10 (𝑥 = (𝑔𝑤) → (∃𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
2928rspccv 3632 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) → ((𝑔𝑤) ∈ 𝐴 → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦)))
3024, 26, 29sylc 65 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦))
31 ssrab2 4103 . . . . . . . . . . . . 13 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝐵
32 ordsson 7818 . . . . . . . . . . . . 13 (Ord 𝐵𝐵 ⊆ On)
3331, 32sstrid 4020 . . . . . . . . . . . 12 (Ord 𝐵 → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On)
34 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑓𝑛) = (𝑓𝑦))
3534sseq2d 4041 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑔𝑤) ⊆ (𝑓𝑛) ↔ (𝑔𝑤) ⊆ (𝑓𝑦)))
3635rspcev 3635 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
37 rabn0 4412 . . . . . . . . . . . . 13 ({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅ ↔ ∃𝑛𝐵 (𝑔𝑤) ⊆ (𝑓𝑛))
3836, 37sylibr 234 . . . . . . . . . . . 12 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅)
39 oninton 7831 . . . . . . . . . . . 12 (({𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ On ∧ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ≠ ∅) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
4033, 38, 39syl2an 595 . . . . . . . . . . 11 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On)
41 eloni 6405 . . . . . . . . . . 11 ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ On → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
4240, 41syl 17 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
43 simpl 482 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → Ord 𝐵)
4435intminss 4998 . . . . . . . . . . 11 ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
4544adantl 481 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦)
46 simprl 770 . . . . . . . . . 10 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → 𝑦𝐵)
47 ordtr2 6439 . . . . . . . . . . 11 ((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) → (( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
4847imp 406 . . . . . . . . . 10 (((Ord {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∧ Ord 𝐵) ∧ ( {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ⊆ 𝑦𝑦𝐵)) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
4942, 43, 45, 46, 48syl22anc 838 . . . . . . . . 9 ((Ord 𝐵 ∧ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦))) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5049rexlimdvaa 3162 . . . . . . . 8 (Ord 𝐵 → (∃𝑦𝐵 (𝑔𝑤) ⊆ (𝑓𝑦) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
5123, 30, 50sylc 65 . . . . . . 7 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵)
5251, 11fmptd 7148 . . . . . 6 ((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) → 𝐻:𝐶𝐵)
5320, 21, 22, 52syl3anc 1371 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝐻:𝐶𝐵)
54 simprr 772 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))
55 simpl1 1191 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓:𝐵𝐴)
56 ffvelcdm 7115 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑠𝐵) → (𝑓𝑠) ∈ 𝐴)
57 sseq1 4034 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑠) → (𝑧 ⊆ (𝑔𝑤) ↔ (𝑓𝑠) ⊆ (𝑔𝑤)))
5857rexbidv 3185 . . . . . . . . . . 11 (𝑧 = (𝑓𝑠) → (∃𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ↔ ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
5958rspccv 3632 . . . . . . . . . 10 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓𝑠) ∈ 𝐴 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6056, 59syl5 34 . . . . . . . . 9 (∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) → ((𝑓:𝐵𝐴𝑠𝐵) → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6160expdimp 452 . . . . . . . 8 ((∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤) ∧ 𝑓:𝐵𝐴) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6254, 55, 61syl2anc 583 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤)))
6355, 16syl 17 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → 𝑓 Fn 𝐵)
64 simpl2 1192 . . . . . . . 8 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → Smo 𝑓)
65 simpr 484 . . . . . . . . . . . . . . . 16 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑤𝐶)
6665, 51jca 511 . . . . . . . . . . . . . . 15 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → (𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵))
6735elrab 3708 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ (𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)))
68 sstr2 4015 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → (𝑓𝑠) ⊆ (𝑓𝑦)))
69 smoword 8422 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → (𝑠𝑦 ↔ (𝑓𝑠) ⊆ (𝑓𝑦)))
7069biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑓𝑦) → 𝑠𝑦))
7168, 70syl9r 78 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ (𝑠𝐵𝑦𝐵)) → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦)))
7271expr 456 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (𝑦𝐵 → ((𝑓𝑠) ⊆ (𝑔𝑤) → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7372com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (𝑦𝐵 → ((𝑔𝑤) ⊆ (𝑓𝑦) → 𝑠𝑦))))
7473imp4b 421 . . . . . . . . . . . . . . . . . . 19 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑦𝐵 ∧ (𝑔𝑤) ⊆ (𝑓𝑦)) → 𝑠𝑦))
7567, 74biimtrid 242 . . . . . . . . . . . . . . . . . 18 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} → 𝑠𝑦))
7675ralrimiv 3151 . . . . . . . . . . . . . . . . 17 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
77 ssint 4988 . . . . . . . . . . . . . . . . 17 (𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ↔ ∀𝑦 ∈ {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}𝑠𝑦)
7876, 77sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
799, 5fvmptg 7027 . . . . . . . . . . . . . . . . 17 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝐻𝑤) = {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)})
8079sseq2d 4041 . . . . . . . . . . . . . . . 16 ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → (𝑠 ⊆ (𝐻𝑤) ↔ 𝑠 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)}))
8178, 80syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → ((𝑤𝐶 {𝑛𝐵 ∣ (𝑔𝑤) ⊆ (𝑓𝑛)} ∈ 𝐵) → 𝑠 ⊆ (𝐻𝑤)))
8266, 81syl5 34 . . . . . . . . . . . . . 14 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (𝑓𝑠) ⊆ (𝑔𝑤)) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤)))
8382ex 412 . . . . . . . . . . . . 13 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → ((𝑓𝑠) ⊆ (𝑔𝑤) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → 𝑠 ⊆ (𝐻𝑤))))
8483com23 86 . . . . . . . . . . . 12 (((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) → (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ 𝑤𝐶) → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8584expdimp 452 . . . . . . . . . . 11 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (𝑤𝐶 → ((𝑓𝑠) ⊆ (𝑔𝑤) → 𝑠 ⊆ (𝐻𝑤))))
8685reximdvai 3171 . . . . . . . . . 10 ((((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵) ∧ (Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8786ancoms 458 . . . . . . . . 9 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ ((𝑓 Fn 𝐵 ∧ Smo 𝑓) ∧ 𝑠𝐵)) → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
8887expr 456 . . . . . . . 8 (((Ord 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦) ∧ 𝑔:𝐶𝐴) ∧ (𝑓 Fn 𝐵 ∧ Smo 𝑓)) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
8920, 21, 22, 63, 64, 88syl32anc 1378 . . . . . . 7 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → (∃𝑤𝐶 (𝑓𝑠) ⊆ (𝑔𝑤) → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9062, 89mpdd 43 . . . . . 6 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → (𝑠𝐵 → ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9190ralrimiv 3151 . . . . 5 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))
92 feq1 6728 . . . . . . . 8 ( = 𝐻 → (:𝐶𝐵𝐻:𝐶𝐵))
93 fveq1 6919 . . . . . . . . . . 11 ( = 𝐻 → (𝑤) = (𝐻𝑤))
9493sseq2d 4041 . . . . . . . . . 10 ( = 𝐻 → (𝑠 ⊆ (𝑤) ↔ 𝑠 ⊆ (𝐻𝑤)))
9594rexbidv 3185 . . . . . . . . 9 ( = 𝐻 → (∃𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∃𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9695ralbidv 3184 . . . . . . . 8 ( = 𝐻 → (∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤) ↔ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)))
9792, 96anbi12d 631 . . . . . . 7 ( = 𝐻 → ((:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)) ↔ (𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤))))
9897spcegv 3610 . . . . . 6 (𝐻 ∈ V → ((𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
99983impib 1116 . . . . 5 ((𝐻 ∈ V ∧ 𝐻:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝐻𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
10015, 53, 91, 99syl3anc 1371 . . . 4 (((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) ∧ (𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤))) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤)))
101100ex 412 . . 3 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → ((𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
102101exlimdv 1932 . 2 ((𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
103102exlimiv 1929 1 (∃𝑓(𝑓:𝐵𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ⊆ (𝑓𝑦)) → (∃𝑔(𝑔:𝐶𝐴 ∧ ∀𝑧𝐴𝑤𝐶 𝑧 ⊆ (𝑔𝑤)) → ∃(:𝐶𝐵 ∧ ∀𝑠𝐵𝑤𝐶 𝑠 ⊆ (𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352   cint 4970  cmpt 5249  dom cdm 5700  Ord word 6394  Oncon0 6395   Fn wfn 6568  wf 6569  cfv 6573  Smo wsmo 8401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-smo 8402
This theorem is referenced by:  cfcof  10343
  Copyright terms: Public domain W3C validator