| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version | ||
| Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
| Ref | Expression |
|---|---|
| brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
| 2 | 1 | ssbri 5136 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
| 3 | brxp 5665 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: brab2a 5709 soirri 6073 sotri 6074 sotri2 6076 sotri3 6077 ndmovord 7536 ndmovordi 7537 swoer 8653 brecop2 8735 ecopovsym 8743 ecopovtrn 8744 hartogslem1 9428 nlt1pi 10794 indpi 10795 nqerf 10818 ordpipq 10830 lterpq 10858 ltexnq 10863 ltbtwnnq 10866 ltrnq 10867 prnmadd 10885 genpcd 10894 nqpr 10902 1idpr 10917 ltexprlem4 10927 ltexpri 10931 ltaprlem 10932 prlem936 10935 reclem2pr 10936 reclem3pr 10937 reclem4pr 10938 suplem1pr 10940 suplem2pr 10941 supexpr 10942 recexsrlem 10991 addgt0sr 10992 mulgt0sr 10993 mappsrpr 10996 map2psrpr 10998 supsrlem 10999 supsr 11000 ltresr 11028 dfle2 13043 dflt2 13044 dvdszrcl 16165 letsr 18496 hmphtop 23691 brtxp2 35914 brpprod3a 35919 brxrn2 38402 aks6d1c1p1rcl 42140 iccdisj2 48927 i0oii 48950 io1ii 48951 |
| Copyright terms: Public domain | W3C validator |