![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
Ref | Expression |
---|---|
brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
2 | 1 | ssbri 5013 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5496 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 219 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2083 ⊆ wss 3865 class class class wbr 4968 × cxp 5448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-xp 5456 |
This theorem is referenced by: brab2a 5537 soirri 5869 sotri 5870 sotri2 5872 sotri3 5873 ndmovord 7201 ndmovordi 7202 swoer 8176 brecop2 8248 ecopovsym 8256 ecopovtrn 8257 hartogslem1 8859 nlt1pi 10181 indpi 10182 nqerf 10205 ordpipq 10217 lterpq 10245 ltexnq 10250 ltbtwnnq 10253 ltrnq 10254 prnmadd 10272 genpcd 10281 nqpr 10289 1idpr 10304 ltexprlem4 10314 ltexpri 10318 ltaprlem 10319 prlem936 10322 reclem2pr 10323 reclem3pr 10324 reclem4pr 10325 suplem1pr 10327 suplem2pr 10328 supexpr 10329 recexsrlem 10378 addgt0sr 10379 mulgt0sr 10380 mappsrpr 10383 map2psrpr 10385 supsrlem 10386 supsr 10387 ltresr 10415 dfle2 12394 dflt2 12395 dvdszrcl 15449 letsr 17670 hmphtop 22074 brtxp2 32953 brpprod3a 32958 brxrn2 35179 |
Copyright terms: Public domain | W3C validator |