![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
Ref | Expression |
---|---|
brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
2 | 1 | ssbri 5192 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5723 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3947 class class class wbr 5147 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 |
This theorem is referenced by: brab2a 5767 soirri 6124 sotri 6125 sotri2 6127 sotri3 6128 ndmovord 7593 ndmovordi 7594 swoer 8729 brecop2 8801 ecopovsym 8809 ecopovtrn 8810 hartogslem1 9533 nlt1pi 10897 indpi 10898 nqerf 10921 ordpipq 10933 lterpq 10961 ltexnq 10966 ltbtwnnq 10969 ltrnq 10970 prnmadd 10988 genpcd 10997 nqpr 11005 1idpr 11020 ltexprlem4 11030 ltexpri 11034 ltaprlem 11035 prlem936 11038 reclem2pr 11039 reclem3pr 11040 reclem4pr 11041 suplem1pr 11043 suplem2pr 11044 supexpr 11045 recexsrlem 11094 addgt0sr 11095 mulgt0sr 11096 mappsrpr 11099 map2psrpr 11101 supsrlem 11102 supsr 11103 ltresr 11131 dfle2 13122 dflt2 13123 dvdszrcl 16198 letsr 18542 hmphtop 23273 brtxp2 34841 brpprod3a 34846 brxrn2 37233 iccdisj2 47483 i0oii 47505 io1ii 47506 |
Copyright terms: Public domain | W3C validator |