| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version | ||
| Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
| Ref | Expression |
|---|---|
| brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
| 2 | 1 | ssbri 5140 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
| 3 | brxp 5672 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: brab2a 5716 soirri 6079 sotri 6080 sotri2 6082 sotri3 6083 ndmovord 7543 ndmovordi 7544 swoer 8663 brecop2 8745 ecopovsym 8753 ecopovtrn 8754 hartogslem1 9453 nlt1pi 10819 indpi 10820 nqerf 10843 ordpipq 10855 lterpq 10883 ltexnq 10888 ltbtwnnq 10891 ltrnq 10892 prnmadd 10910 genpcd 10919 nqpr 10927 1idpr 10942 ltexprlem4 10952 ltexpri 10956 ltaprlem 10957 prlem936 10960 reclem2pr 10961 reclem3pr 10962 reclem4pr 10963 suplem1pr 10965 suplem2pr 10966 supexpr 10967 recexsrlem 11016 addgt0sr 11017 mulgt0sr 11018 mappsrpr 11021 map2psrpr 11023 supsrlem 11024 supsr 11025 ltresr 11053 dfle2 13067 dflt2 13068 dvdszrcl 16186 letsr 18517 hmphtop 23681 brtxp2 35854 brpprod3a 35859 brxrn2 38342 aks6d1c1p1rcl 42081 iccdisj2 48882 i0oii 48905 io1ii 48906 |
| Copyright terms: Public domain | W3C validator |