| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version | ||
| Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
| Ref | Expression |
|---|---|
| brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
| 2 | 1 | ssbri 5155 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
| 3 | brxp 5690 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: brab2a 5735 soirri 6102 sotri 6103 sotri2 6105 sotri3 6106 ndmovord 7582 ndmovordi 7583 swoer 8705 brecop2 8787 ecopovsym 8795 ecopovtrn 8796 hartogslem1 9502 nlt1pi 10866 indpi 10867 nqerf 10890 ordpipq 10902 lterpq 10930 ltexnq 10935 ltbtwnnq 10938 ltrnq 10939 prnmadd 10957 genpcd 10966 nqpr 10974 1idpr 10989 ltexprlem4 10999 ltexpri 11003 ltaprlem 11004 prlem936 11007 reclem2pr 11008 reclem3pr 11009 reclem4pr 11010 suplem1pr 11012 suplem2pr 11013 supexpr 11014 recexsrlem 11063 addgt0sr 11064 mulgt0sr 11065 mappsrpr 11068 map2psrpr 11070 supsrlem 11071 supsr 11072 ltresr 11100 dfle2 13114 dflt2 13115 dvdszrcl 16234 letsr 18559 hmphtop 23672 brtxp2 35876 brpprod3a 35881 brxrn2 38364 aks6d1c1p1rcl 42103 iccdisj2 48889 i0oii 48912 io1ii 48913 |
| Copyright terms: Public domain | W3C validator |