| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version | ||
| Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
| Ref | Expression |
|---|---|
| brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
| 2 | 1 | ssbri 5138 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
| 3 | brxp 5668 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: brab2a 5712 soirri 6077 sotri 6078 sotri2 6080 sotri3 6081 ndmovord 7542 ndmovordi 7543 swoer 8659 brecop2 8741 ecopovsym 8749 ecopovtrn 8750 hartogslem1 9435 nlt1pi 10804 indpi 10805 nqerf 10828 ordpipq 10840 lterpq 10868 ltexnq 10873 ltbtwnnq 10876 ltrnq 10877 prnmadd 10895 genpcd 10904 nqpr 10912 1idpr 10927 ltexprlem4 10937 ltexpri 10941 ltaprlem 10942 prlem936 10945 reclem2pr 10946 reclem3pr 10947 reclem4pr 10948 suplem1pr 10950 suplem2pr 10951 supexpr 10952 recexsrlem 11001 addgt0sr 11002 mulgt0sr 11003 mappsrpr 11006 map2psrpr 11008 supsrlem 11009 supsr 11010 ltresr 11038 dfle2 13048 dflt2 13049 dvdszrcl 16170 letsr 18501 hmphtop 23694 brtxp2 35944 brpprod3a 35949 brxrn2 38428 aks6d1c1p1rcl 42221 iccdisj2 49021 i0oii 49044 io1ii 49045 |
| Copyright terms: Public domain | W3C validator |