| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version | ||
| Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
| Ref | Expression |
|---|---|
| brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
| 2 | 1 | ssbri 5169 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
| 3 | brxp 5708 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: brab2a 5753 soirri 6120 sotri 6121 sotri2 6123 sotri3 6124 ndmovord 7602 ndmovordi 7603 swoer 8755 brecop2 8830 ecopovsym 8838 ecopovtrn 8839 hartogslem1 9561 nlt1pi 10925 indpi 10926 nqerf 10949 ordpipq 10961 lterpq 10989 ltexnq 10994 ltbtwnnq 10997 ltrnq 10998 prnmadd 11016 genpcd 11025 nqpr 11033 1idpr 11048 ltexprlem4 11058 ltexpri 11062 ltaprlem 11063 prlem936 11066 reclem2pr 11067 reclem3pr 11068 reclem4pr 11069 suplem1pr 11071 suplem2pr 11072 supexpr 11073 recexsrlem 11122 addgt0sr 11123 mulgt0sr 11124 mappsrpr 11127 map2psrpr 11129 supsrlem 11130 supsr 11131 ltresr 11159 dfle2 13168 dflt2 13169 dvdszrcl 16282 letsr 18608 hmphtop 23721 brtxp2 35904 brpprod3a 35909 brxrn2 38398 aks6d1c1p1rcl 42126 iccdisj2 48851 i0oii 48874 io1ii 48875 |
| Copyright terms: Public domain | W3C validator |