Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
Ref | Expression |
---|---|
brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
2 | 1 | ssbri 5115 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5627 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 |
This theorem is referenced by: brab2a 5670 soirri 6020 sotri 6021 sotri2 6023 sotri3 6024 ndmovord 7440 ndmovordi 7441 swoer 8486 brecop2 8558 ecopovsym 8566 ecopovtrn 8567 hartogslem1 9231 nlt1pi 10593 indpi 10594 nqerf 10617 ordpipq 10629 lterpq 10657 ltexnq 10662 ltbtwnnq 10665 ltrnq 10666 prnmadd 10684 genpcd 10693 nqpr 10701 1idpr 10716 ltexprlem4 10726 ltexpri 10730 ltaprlem 10731 prlem936 10734 reclem2pr 10735 reclem3pr 10736 reclem4pr 10737 suplem1pr 10739 suplem2pr 10740 supexpr 10741 recexsrlem 10790 addgt0sr 10791 mulgt0sr 10792 mappsrpr 10795 map2psrpr 10797 supsrlem 10798 supsr 10799 ltresr 10827 dfle2 12810 dflt2 12811 dvdszrcl 15896 letsr 18226 hmphtop 22837 brtxp2 34110 brpprod3a 34115 brxrn2 36432 iccdisj2 46079 i0oii 46101 io1ii 46102 |
Copyright terms: Public domain | W3C validator |