| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version | ||
| Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
| Ref | Expression |
|---|---|
| brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
| 2 | 1 | ssbri 5152 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
| 3 | brxp 5687 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: brab2a 5732 soirri 6099 sotri 6100 sotri2 6102 sotri3 6103 ndmovord 7579 ndmovordi 7580 swoer 8702 brecop2 8784 ecopovsym 8792 ecopovtrn 8793 hartogslem1 9495 nlt1pi 10859 indpi 10860 nqerf 10883 ordpipq 10895 lterpq 10923 ltexnq 10928 ltbtwnnq 10931 ltrnq 10932 prnmadd 10950 genpcd 10959 nqpr 10967 1idpr 10982 ltexprlem4 10992 ltexpri 10996 ltaprlem 10997 prlem936 11000 reclem2pr 11001 reclem3pr 11002 reclem4pr 11003 suplem1pr 11005 suplem2pr 11006 supexpr 11007 recexsrlem 11056 addgt0sr 11057 mulgt0sr 11058 mappsrpr 11061 map2psrpr 11063 supsrlem 11064 supsr 11065 ltresr 11093 dfle2 13107 dflt2 13108 dvdszrcl 16227 letsr 18552 hmphtop 23665 brtxp2 35869 brpprod3a 35874 brxrn2 38357 aks6d1c1p1rcl 42096 iccdisj2 48885 i0oii 48908 io1ii 48909 |
| Copyright terms: Public domain | W3C validator |