![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
Ref | Expression |
---|---|
brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
2 | 1 | ssbri 5194 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5726 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 class class class wbr 5149 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 |
This theorem is referenced by: brab2a 5770 soirri 6128 sotri 6129 sotri2 6131 sotri3 6132 ndmovord 7597 ndmovordi 7598 swoer 8733 brecop2 8805 ecopovsym 8813 ecopovtrn 8814 hartogslem1 9537 nlt1pi 10901 indpi 10902 nqerf 10925 ordpipq 10937 lterpq 10965 ltexnq 10970 ltbtwnnq 10973 ltrnq 10974 prnmadd 10992 genpcd 11001 nqpr 11009 1idpr 11024 ltexprlem4 11034 ltexpri 11038 ltaprlem 11039 prlem936 11042 reclem2pr 11043 reclem3pr 11044 reclem4pr 11045 suplem1pr 11047 suplem2pr 11048 supexpr 11049 recexsrlem 11098 addgt0sr 11099 mulgt0sr 11100 mappsrpr 11103 map2psrpr 11105 supsrlem 11106 supsr 11107 ltresr 11135 dfle2 13126 dflt2 13127 dvdszrcl 16202 letsr 18546 hmphtop 23282 brtxp2 34853 brpprod3a 34858 brxrn2 37245 iccdisj2 47530 i0oii 47552 io1ii 47553 |
Copyright terms: Public domain | W3C validator |