![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
Ref | Expression |
---|---|
brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
2 | 1 | ssbri 5193 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5738 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 |
This theorem is referenced by: brab2a 5782 soirri 6149 sotri 6150 sotri2 6152 sotri3 6153 ndmovord 7623 ndmovordi 7624 swoer 8775 brecop2 8850 ecopovsym 8858 ecopovtrn 8859 hartogslem1 9580 nlt1pi 10944 indpi 10945 nqerf 10968 ordpipq 10980 lterpq 11008 ltexnq 11013 ltbtwnnq 11016 ltrnq 11017 prnmadd 11035 genpcd 11044 nqpr 11052 1idpr 11067 ltexprlem4 11077 ltexpri 11081 ltaprlem 11082 prlem936 11085 reclem2pr 11086 reclem3pr 11087 reclem4pr 11088 suplem1pr 11090 suplem2pr 11091 supexpr 11092 recexsrlem 11141 addgt0sr 11142 mulgt0sr 11143 mappsrpr 11146 map2psrpr 11148 supsrlem 11149 supsr 11150 ltresr 11178 dfle2 13186 dflt2 13187 dvdszrcl 16292 letsr 18651 hmphtop 23802 brtxp2 35863 brpprod3a 35868 brxrn2 38357 aks6d1c1p1rcl 42090 iccdisj2 48694 i0oii 48716 io1ii 48717 |
Copyright terms: Public domain | W3C validator |