![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brel | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brel.1 | ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
Ref | Expression |
---|---|
brel | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brel.1 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) | |
2 | 1 | ssbri 5211 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5749 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 218 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 |
This theorem is referenced by: brab2a 5793 soirri 6158 sotri 6159 sotri2 6161 sotri3 6162 ndmovord 7640 ndmovordi 7641 swoer 8794 brecop2 8869 ecopovsym 8877 ecopovtrn 8878 hartogslem1 9611 nlt1pi 10975 indpi 10976 nqerf 10999 ordpipq 11011 lterpq 11039 ltexnq 11044 ltbtwnnq 11047 ltrnq 11048 prnmadd 11066 genpcd 11075 nqpr 11083 1idpr 11098 ltexprlem4 11108 ltexpri 11112 ltaprlem 11113 prlem936 11116 reclem2pr 11117 reclem3pr 11118 reclem4pr 11119 suplem1pr 11121 suplem2pr 11122 supexpr 11123 recexsrlem 11172 addgt0sr 11173 mulgt0sr 11174 mappsrpr 11177 map2psrpr 11179 supsrlem 11180 supsr 11181 ltresr 11209 dfle2 13209 dflt2 13210 dvdszrcl 16307 letsr 18663 hmphtop 23807 brtxp2 35845 brpprod3a 35850 brxrn2 38331 aks6d1c1p1rcl 42065 iccdisj2 48577 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |