MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sonr Structured version   Visualization version   GIF version

Theorem sonr 5621
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem sonr
StepHypRef Expression
1 sopo 5616 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 poirr 5609 . 2 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2sylan 580 1 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2106   class class class wbr 5148   Po wpo 5595   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-po 5597  df-so 5598
This theorem is referenced by:  sotric  5626  sotrieq  5627  soirri  6149  suppr  9509  infpr  9541  hartogslem1  9580  canth4  10685  canthwelem  10688  pwfseqlem4  10700  1ne0sr  11134  ltnr  11354  opsrtoslem2  22098  nodenselem4  27747  nodenselem5  27748  nodenselem7  27750  nolt02o  27755  nogt01o  27756  noresle  27757  nosupbnd1lem1  27768  nosupbnd2lem1  27775  noinfbnd1lem1  27783  noinfbnd2lem1  27790  sltirr  27806  weiunpo  36448  fin2solem  37593  fin2so  37594
  Copyright terms: Public domain W3C validator