| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
| Ref | Expression |
|---|---|
| sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5580 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | poirr 5573 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 Po wpo 5559 Or wor 5560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-po 5561 df-so 5562 |
| This theorem is referenced by: sotric 5591 sotrieq 5592 soirri 6115 suppr 9484 infpr 9517 hartogslem1 9556 canth4 10661 canthwelem 10664 pwfseqlem4 10676 1ne0sr 11110 ltnr 11330 opsrtoslem2 22014 nodenselem4 27651 nodenselem5 27652 nodenselem7 27654 nolt02o 27659 nogt01o 27660 noresle 27661 nosupbnd1lem1 27672 nosupbnd2lem1 27679 noinfbnd1lem1 27687 noinfbnd2lem1 27694 sltirr 27710 weiunpo 36483 fin2solem 37630 fin2so 37631 |
| Copyright terms: Public domain | W3C validator |