| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
| Ref | Expression |
|---|---|
| sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5550 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | poirr 5543 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 Po wpo 5529 Or wor 5530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-po 5531 df-so 5532 |
| This theorem is referenced by: sotric 5561 sotrieq 5562 soirri 6079 suppr 9381 infpr 9414 hartogslem1 9453 canth4 10560 canthwelem 10563 pwfseqlem4 10575 1ne0sr 11009 ltnr 11229 opsrtoslem2 21979 nodenselem4 27615 nodenselem5 27616 nodenselem7 27618 nolt02o 27623 nogt01o 27624 noresle 27625 nosupbnd1lem1 27636 nosupbnd2lem1 27643 noinfbnd1lem1 27651 noinfbnd2lem1 27658 sltirr 27674 weiunpo 36438 fin2solem 37585 fin2so 37586 |
| Copyright terms: Public domain | W3C validator |