Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
Ref | Expression |
---|---|
sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5465 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | poirr 5458 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
3 | 1, 2 | sylan 583 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∈ wcel 2111 class class class wbr 5036 Po wpo 5445 Or wor 5446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-v 3411 df-un 3865 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-po 5447 df-so 5448 |
This theorem is referenced by: sotric 5474 sotrieq 5475 soirri 5963 suppr 8981 infpr 9013 hartogslem1 9052 canth4 10120 canthwelem 10123 pwfseqlem4 10135 1ne0sr 10569 ltnr 10786 opsrtoslem2 20829 nodenselem4 33487 nodenselem5 33488 nodenselem7 33490 nolt02o 33495 nogt01o 33496 noresle 33497 nosupbnd1lem1 33508 nosupbnd2lem1 33515 noinfbnd1lem1 33523 noinfbnd2lem1 33530 sltirr 33546 fin2solem 35357 fin2so 35358 |
Copyright terms: Public domain | W3C validator |