Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
Ref | Expression |
---|---|
sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5522 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | poirr 5515 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 Po wpo 5501 Or wor 5502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-po 5503 df-so 5504 |
This theorem is referenced by: sotric 5531 sotrieq 5532 soirri 6031 suppr 9230 infpr 9262 hartogslem1 9301 canth4 10403 canthwelem 10406 pwfseqlem4 10418 1ne0sr 10852 ltnr 11070 opsrtoslem2 21263 nodenselem4 33890 nodenselem5 33891 nodenselem7 33893 nolt02o 33898 nogt01o 33899 noresle 33900 nosupbnd1lem1 33911 nosupbnd2lem1 33918 noinfbnd1lem1 33926 noinfbnd2lem1 33933 sltirr 33949 fin2solem 35763 fin2so 35764 |
Copyright terms: Public domain | W3C validator |