Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
Ref | Expression |
---|---|
sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5513 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | poirr 5506 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 Po wpo 5492 Or wor 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-po 5494 df-so 5495 |
This theorem is referenced by: sotric 5522 sotrieq 5523 soirri 6020 suppr 9160 infpr 9192 hartogslem1 9231 canth4 10334 canthwelem 10337 pwfseqlem4 10349 1ne0sr 10783 ltnr 11000 opsrtoslem2 21173 nodenselem4 33817 nodenselem5 33818 nodenselem7 33820 nolt02o 33825 nogt01o 33826 noresle 33827 nosupbnd1lem1 33838 nosupbnd2lem1 33845 noinfbnd1lem1 33853 noinfbnd2lem1 33860 sltirr 33876 fin2solem 35690 fin2so 35691 |
Copyright terms: Public domain | W3C validator |