MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sonr Structured version   Visualization version   GIF version

Theorem sonr 5548
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem sonr
StepHypRef Expression
1 sopo 5543 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 poirr 5536 . 2 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2sylan 580 1 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111   class class class wbr 5091   Po wpo 5522   Or wor 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-po 5524  df-so 5525
This theorem is referenced by:  sotric  5554  sotrieq  5555  soirri  6073  suppr  9356  infpr  9389  hartogslem1  9428  canth4  10538  canthwelem  10541  pwfseqlem4  10553  1ne0sr  10987  ltnr  11208  opsrtoslem2  21992  nodenselem4  27627  nodenselem5  27628  nodenselem7  27630  nolt02o  27635  nogt01o  27636  noresle  27637  nosupbnd1lem1  27648  nosupbnd2lem1  27655  noinfbnd1lem1  27663  noinfbnd2lem1  27670  sltirr  27686  weiunpo  36505  fin2solem  37652  fin2so  37653
  Copyright terms: Public domain W3C validator