![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
Ref | Expression |
---|---|
sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 5616 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
2 | poirr 5609 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 Po wpo 5595 Or wor 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-po 5597 df-so 5598 |
This theorem is referenced by: sotric 5626 sotrieq 5627 soirri 6149 suppr 9509 infpr 9541 hartogslem1 9580 canth4 10685 canthwelem 10688 pwfseqlem4 10700 1ne0sr 11134 ltnr 11354 opsrtoslem2 22098 nodenselem4 27747 nodenselem5 27748 nodenselem7 27750 nolt02o 27755 nogt01o 27756 noresle 27757 nosupbnd1lem1 27768 nosupbnd2lem1 27775 noinfbnd1lem1 27783 noinfbnd2lem1 27790 sltirr 27806 weiunpo 36448 fin2solem 37593 fin2so 37594 |
Copyright terms: Public domain | W3C validator |