MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sonr Structured version   Visualization version   GIF version

Theorem sonr 5517
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem sonr
StepHypRef Expression
1 sopo 5513 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 poirr 5506 . 2 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2sylan 579 1 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108   class class class wbr 5070   Po wpo 5492   Or wor 5493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494  df-so 5495
This theorem is referenced by:  sotric  5522  sotrieq  5523  soirri  6020  suppr  9160  infpr  9192  hartogslem1  9231  canth4  10334  canthwelem  10337  pwfseqlem4  10349  1ne0sr  10783  ltnr  11000  opsrtoslem2  21173  nodenselem4  33817  nodenselem5  33818  nodenselem7  33820  nolt02o  33825  nogt01o  33826  noresle  33827  nosupbnd1lem1  33838  nosupbnd2lem1  33845  noinfbnd1lem1  33853  noinfbnd2lem1  33860  sltirr  33876  fin2solem  35690  fin2so  35691
  Copyright terms: Public domain W3C validator