MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sonr Structured version   Visualization version   GIF version

Theorem sonr 5551
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem sonr
StepHypRef Expression
1 sopo 5546 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 poirr 5539 . 2 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2sylan 580 1 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2113   class class class wbr 5093   Po wpo 5525   Or wor 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-po 5527  df-so 5528
This theorem is referenced by:  sotric  5557  sotrieq  5558  soirri  6077  suppr  9363  infpr  9396  hartogslem1  9435  canth4  10545  canthwelem  10548  pwfseqlem4  10560  1ne0sr  10994  ltnr  11215  opsrtoslem2  21992  nodenselem4  27627  nodenselem5  27628  nodenselem7  27630  nolt02o  27635  nogt01o  27636  noresle  27637  nosupbnd1lem1  27648  nosupbnd2lem1  27655  noinfbnd1lem1  27663  noinfbnd2lem1  27670  sltirr  27686  weiunpo  36530  fin2solem  37667  fin2so  37668
  Copyright terms: Public domain W3C validator