| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
| Ref | Expression |
|---|---|
| sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5565 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | poirr 5558 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 Po wpo 5544 Or wor 5545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-po 5546 df-so 5547 |
| This theorem is referenced by: sotric 5576 sotrieq 5577 soirri 6099 suppr 9423 infpr 9456 hartogslem1 9495 canth4 10600 canthwelem 10603 pwfseqlem4 10615 1ne0sr 11049 ltnr 11269 opsrtoslem2 21963 nodenselem4 27599 nodenselem5 27600 nodenselem7 27602 nolt02o 27607 nogt01o 27608 noresle 27609 nosupbnd1lem1 27620 nosupbnd2lem1 27627 noinfbnd1lem1 27635 noinfbnd2lem1 27642 sltirr 27658 weiunpo 36453 fin2solem 37600 fin2so 37601 |
| Copyright terms: Public domain | W3C validator |