MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sonr Structured version   Visualization version   GIF version

Theorem sonr 5555
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem sonr
StepHypRef Expression
1 sopo 5550 . 2 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 poirr 5543 . 2 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2sylan 580 1 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109   class class class wbr 5095   Po wpo 5529   Or wor 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-po 5531  df-so 5532
This theorem is referenced by:  sotric  5561  sotrieq  5562  soirri  6079  suppr  9381  infpr  9414  hartogslem1  9453  canth4  10560  canthwelem  10563  pwfseqlem4  10575  1ne0sr  11009  ltnr  11229  opsrtoslem2  21979  nodenselem4  27615  nodenselem5  27616  nodenselem7  27618  nolt02o  27623  nogt01o  27624  noresle  27625  nosupbnd1lem1  27636  nosupbnd2lem1  27643  noinfbnd1lem1  27651  noinfbnd2lem1  27658  sltirr  27674  weiunpo  36438  fin2solem  37585  fin2so  37586
  Copyright terms: Public domain W3C validator