| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
| Ref | Expression |
|---|---|
| sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5543 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | poirr 5536 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 Po wpo 5522 Or wor 5523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-po 5524 df-so 5525 |
| This theorem is referenced by: sotric 5554 sotrieq 5555 soirri 6073 suppr 9356 infpr 9389 hartogslem1 9428 canth4 10538 canthwelem 10541 pwfseqlem4 10553 1ne0sr 10987 ltnr 11208 opsrtoslem2 21992 nodenselem4 27627 nodenselem5 27628 nodenselem7 27630 nolt02o 27635 nogt01o 27636 noresle 27637 nosupbnd1lem1 27648 nosupbnd2lem1 27655 noinfbnd1lem1 27663 noinfbnd2lem1 27670 sltirr 27686 weiunpo 36505 fin2solem 37652 fin2so 37653 |
| Copyright terms: Public domain | W3C validator |