| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sonr | Structured version Visualization version GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.) |
| Ref | Expression |
|---|---|
| sonr | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 5568 | . 2 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 2 | poirr 5561 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 Po wpo 5547 Or wor 5548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-po 5549 df-so 5550 |
| This theorem is referenced by: sotric 5579 sotrieq 5580 soirri 6102 suppr 9430 infpr 9463 hartogslem1 9502 canth4 10607 canthwelem 10610 pwfseqlem4 10622 1ne0sr 11056 ltnr 11276 opsrtoslem2 21970 nodenselem4 27606 nodenselem5 27607 nodenselem7 27609 nolt02o 27614 nogt01o 27615 noresle 27616 nosupbnd1lem1 27627 nosupbnd2lem1 27634 noinfbnd1lem1 27642 noinfbnd2lem1 27649 sltirr 27665 weiunpo 36460 fin2solem 37607 fin2so 37608 |
| Copyright terms: Public domain | W3C validator |