![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > somin2 | Structured version Visualization version GIF version |
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
somin2 | ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | somincom 6134 | . 2 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | |
2 | somin1 6133 | . . 3 ⊢ ((𝑅 Or 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵) | |
3 | 2 | ancom2s 649 | . 2 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵) |
4 | 1, 3 | eqbrtrd 5164 | 1 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∪ cun 3942 ifcif 4524 class class class wbr 5142 I cid 5569 Or wor 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 |
This theorem is referenced by: soltmin 6136 |
Copyright terms: Public domain | W3C validator |