| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > somin2 | Structured version Visualization version GIF version | ||
| Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| somin2 | ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | somincom 6109 | . 2 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | |
| 2 | somin1 6108 | . . 3 ⊢ ((𝑅 Or 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵) | |
| 3 | 2 | ancom2s 650 | . 2 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵) |
| 4 | 1, 3 | eqbrtrd 5131 | 1 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3914 ifcif 4490 class class class wbr 5109 I cid 5534 Or wor 5547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 |
| This theorem is referenced by: soltmin 6111 |
| Copyright terms: Public domain | W3C validator |