![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > somin2 | Structured version Visualization version GIF version |
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
somin2 | ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | somincom 6166 | . 2 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | |
2 | somin1 6165 | . . 3 ⊢ ((𝑅 Or 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵) | |
3 | 2 | ancom2s 649 | . 2 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵) |
4 | 1, 3 | eqbrtrd 5188 | 1 ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∪ cun 3974 ifcif 4548 class class class wbr 5166 I cid 5592 Or wor 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 |
This theorem is referenced by: soltmin 6168 |
Copyright terms: Public domain | W3C validator |