MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin2 Structured version   Visualization version   GIF version

Theorem somin2 6126
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵)

Proof of Theorem somin2
StepHypRef Expression
1 somincom 6125 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
2 somin1 6124 . . 3 ((𝑅 Or 𝑋 ∧ (𝐵𝑋𝐴𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵)
32ancom2s 647 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵)
41, 3eqbrtrd 5160 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  cun 3938  ifcif 4520   class class class wbr 5138   I cid 5563   Or wor 5577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673
This theorem is referenced by:  soltmin  6127
  Copyright terms: Public domain W3C validator