MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin2 Structured version   Visualization version   GIF version

Theorem somin2 6088
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵)

Proof of Theorem somin2
StepHypRef Expression
1 somincom 6087 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
2 somin1 6086 . . 3 ((𝑅 Or 𝑋 ∧ (𝐵𝑋𝐴𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵)
32ancom2s 650 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐵𝑅𝐴, 𝐵, 𝐴)(𝑅 ∪ I )𝐵)
41, 3eqbrtrd 5117 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cun 3903  ifcif 4478   class class class wbr 5095   I cid 5517   Or wor 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630
This theorem is referenced by:  soltmin  6089
  Copyright terms: Public domain W3C validator