MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srglz Structured version   Visualization version   GIF version

Theorem srglz 20121
Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgz.b 𝐵 = (Base‘𝑅)
srgz.t · = (.r𝑅)
srgz.z 0 = (0g𝑅)
Assertion
Ref Expression
srglz ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem srglz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 eqid 2731 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
4 srgz.t . . . . . . 7 · = (.r𝑅)
5 srgz.z . . . . . . 7 0 = (0g𝑅)
61, 2, 3, 4, 5issrg 20101 . . . . . 6 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
76simp3bi 1147 . . . . 5 (𝑅 ∈ SRing → ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
87r19.21bi 3224 . . . 4 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
98simprld 771 . . 3 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
109ralrimiva 3124 . 2 (𝑅 ∈ SRing → ∀𝑥𝐵 ( 0 · 𝑥) = 0 )
11 oveq2 7349 . . . 4 (𝑥 = 𝑋 → ( 0 · 𝑥) = ( 0 · 𝑋))
1211eqeq1d 2733 . . 3 (𝑥 = 𝑋 → (( 0 · 𝑥) = 0 ↔ ( 0 · 𝑋) = 0 ))
1312rspcv 3568 . 2 (𝑋𝐵 → (∀𝑥𝐵 ( 0 · 𝑥) = 0 → ( 0 · 𝑋) = 0 ))
1410, 13mpan9 506 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  0gc0g 17338  Mndcmnd 18637  CMndccmn 19687  mulGrpcmgp 20053  SRingcsrg 20099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-srg 20100
This theorem is referenced by:  srgmulgass  20130  srgrmhm  20135
  Copyright terms: Public domain W3C validator