| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 canthnumlem 10601 canthp1lem2 10606 latcl2 18395 clatlem 18461 dirtr 18561 srglz 20117 lmodvsass 20793 lmghm 20938 evlssca 21996 mircgr 28584 dfcgra2 28757 mgcmnt1d 32923 mgcmnt2d 32924 mgcf1o 32929 ssmxidllem 33444 ssmxidl 33445 maxsta 35541 lbioc 45511 icccncfext 45885 stoweidlem37 46035 fourierdlem41 46146 fourierdlem48 46152 fourierdlem49 46153 fourierdlem74 46178 fourierdlem75 46179 salgencl 46330 salgenuni 46335 issalgend 46336 smfaddlem1 46761 funcoppc4 49133 |
| Copyright terms: Public domain | W3C validator |