MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprld Structured version   Visualization version   GIF version

Theorem simprld 771
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprld.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprld (𝜑𝜒)

Proof of Theorem simprld
StepHypRef Expression
1 simprld.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 495 . 2 (𝜑 → (𝜒𝜃))
32simpld 494 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fpwwe2lem5  10548  fpwwe2lem6  10549  fpwwe2lem8  10551  canthnumlem  10561  canthp1lem2  10566  latcl2  18360  clatlem  18426  dirtr  18526  srglz  20111  lmodvsass  20808  lmghm  20953  evlssca  22012  mircgr  28620  dfcgra2  28793  mgcmnt1d  32952  mgcmnt2d  32953  mgcf1o  32958  ssmxidllem  33420  ssmxidl  33421  maxsta  35526  lbioc  45495  icccncfext  45869  stoweidlem37  46019  fourierdlem41  46130  fourierdlem48  46136  fourierdlem49  46137  fourierdlem74  46162  fourierdlem75  46163  salgencl  46314  salgenuni  46319  issalgend  46320  smfaddlem1  46745  funcoppc4  49130
  Copyright terms: Public domain W3C validator