| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 canthnumlem 10662 canthp1lem2 10667 latcl2 18446 clatlem 18512 dirtr 18612 srglz 20168 lmodvsass 20844 lmghm 20989 evlssca 22047 mircgr 28636 dfcgra2 28809 mgcmnt1d 32977 mgcmnt2d 32978 mgcf1o 32983 ssmxidllem 33488 ssmxidl 33489 maxsta 35576 lbioc 45542 icccncfext 45916 stoweidlem37 46066 fourierdlem41 46177 fourierdlem48 46183 fourierdlem49 46184 fourierdlem74 46209 fourierdlem75 46210 salgencl 46361 salgenuni 46366 issalgend 46367 smfaddlem1 46792 funcoppc4 49087 |
| Copyright terms: Public domain | W3C validator |