MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprld Structured version   Visualization version   GIF version

Theorem simprld 771
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprld.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprld (𝜑𝜒)

Proof of Theorem simprld
StepHypRef Expression
1 simprld.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 495 . 2 (𝜑 → (𝜒𝜃))
32simpld 494 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fpwwe2lem5  10588  fpwwe2lem6  10589  fpwwe2lem8  10591  canthnumlem  10601  canthp1lem2  10606  latcl2  18395  clatlem  18461  dirtr  18561  srglz  20117  lmodvsass  20793  lmghm  20938  evlssca  21996  mircgr  28584  dfcgra2  28757  mgcmnt1d  32923  mgcmnt2d  32924  mgcf1o  32929  ssmxidllem  33444  ssmxidl  33445  maxsta  35541  lbioc  45511  icccncfext  45885  stoweidlem37  46035  fourierdlem41  46146  fourierdlem48  46152  fourierdlem49  46153  fourierdlem74  46178  fourierdlem75  46179  salgencl  46330  salgenuni  46335  issalgend  46336  smfaddlem1  46761  funcoppc4  49133
  Copyright terms: Public domain W3C validator