MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprld Structured version   Visualization version   GIF version

Theorem simprld 771
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprld.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprld (𝜑𝜒)

Proof of Theorem simprld
StepHypRef Expression
1 simprld.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 495 . 2 (𝜑 → (𝜒𝜃))
32simpld 494 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fpwwe2lem5  10649  fpwwe2lem6  10650  fpwwe2lem8  10652  canthnumlem  10662  canthp1lem2  10667  latcl2  18446  clatlem  18512  dirtr  18612  srglz  20168  lmodvsass  20844  lmghm  20989  evlssca  22047  mircgr  28636  dfcgra2  28809  mgcmnt1d  32977  mgcmnt2d  32978  mgcf1o  32983  ssmxidllem  33488  ssmxidl  33489  maxsta  35576  lbioc  45542  icccncfext  45916  stoweidlem37  46066  fourierdlem41  46177  fourierdlem48  46183  fourierdlem49  46184  fourierdlem74  46209  fourierdlem75  46210  salgencl  46361  salgenuni  46366  issalgend  46367  smfaddlem1  46792  funcoppc4  49087
  Copyright terms: Public domain W3C validator