MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprld Structured version   Visualization version   GIF version

Theorem simprld 768
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprld.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprld (𝜑𝜒)

Proof of Theorem simprld
StepHypRef Expression
1 simprld.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 495 . 2 (𝜑 → (𝜒𝜃))
32simpld 494 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  fpwwe2lem5  10322  fpwwe2lem6  10323  fpwwe2lem8  10325  canthnumlem  10335  canthp1lem2  10340  latcl2  18069  clatlem  18135  dirtr  18235  srglz  19678  lmodvsass  20063  lmghm  20208  evlssca  21209  mircgr  26922  dfcgra2  27095  mgcmnt1d  31177  mgcmnt2d  31178  mgcf1o  31183  ssmxidllem  31543  ssmxidl  31544  maxsta  33416  lbioc  42941  icccncfext  43318  stoweidlem37  43468  fourierdlem41  43579  fourierdlem48  43585  fourierdlem49  43586  fourierdlem74  43611  fourierdlem75  43612  salgencl  43761  salgenuni  43766  issalgend  43767  smfaddlem1  44185
  Copyright terms: Public domain W3C validator