![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fpwwe2lem5 10673 fpwwe2lem6 10674 fpwwe2lem8 10676 canthnumlem 10686 canthp1lem2 10691 latcl2 18494 clatlem 18560 dirtr 18660 srglz 20226 lmodvsass 20902 lmghm 21048 evlssca 22131 mircgr 28680 dfcgra2 28853 mgcmnt1d 32972 mgcmnt2d 32973 mgcf1o 32978 ssmxidllem 33481 ssmxidl 33482 maxsta 35539 lbioc 45466 icccncfext 45843 stoweidlem37 45993 fourierdlem41 46104 fourierdlem48 46110 fourierdlem49 46111 fourierdlem74 46136 fourierdlem75 46137 salgencl 46288 salgenuni 46293 issalgend 46294 smfaddlem1 46719 |
Copyright terms: Public domain | W3C validator |