| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem5 10548 fpwwe2lem6 10549 fpwwe2lem8 10551 canthnumlem 10561 canthp1lem2 10566 latcl2 18360 clatlem 18426 dirtr 18526 srglz 20111 lmodvsass 20808 lmghm 20953 evlssca 22012 mircgr 28620 dfcgra2 28793 mgcmnt1d 32952 mgcmnt2d 32953 mgcf1o 32958 ssmxidllem 33420 ssmxidl 33421 maxsta 35526 lbioc 45495 icccncfext 45869 stoweidlem37 46019 fourierdlem41 46130 fourierdlem48 46136 fourierdlem49 46137 fourierdlem74 46162 fourierdlem75 46163 salgencl 46314 salgenuni 46319 issalgend 46320 smfaddlem1 46745 funcoppc4 49130 |
| Copyright terms: Public domain | W3C validator |