| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 canthnumlem 10608 canthp1lem2 10613 latcl2 18402 clatlem 18468 dirtr 18568 srglz 20124 lmodvsass 20800 lmghm 20945 evlssca 22003 mircgr 28591 dfcgra2 28764 mgcmnt1d 32930 mgcmnt2d 32931 mgcf1o 32936 ssmxidllem 33451 ssmxidl 33452 maxsta 35548 lbioc 45518 icccncfext 45892 stoweidlem37 46042 fourierdlem41 46153 fourierdlem48 46159 fourierdlem49 46160 fourierdlem74 46185 fourierdlem75 46186 salgencl 46337 salgenuni 46342 issalgend 46343 smfaddlem1 46768 funcoppc4 49137 |
| Copyright terms: Public domain | W3C validator |