MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprld Structured version   Visualization version   GIF version

Theorem simprld 759
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprld.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprld (𝜑𝜒)

Proof of Theorem simprld
StepHypRef Expression
1 simprld.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 488 . 2 (𝜑 → (𝜒𝜃))
32simpld 487 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388
This theorem is referenced by:  fpwwe2lem6  9849  fpwwe2lem7  9850  fpwwe2lem9  9852  canthnumlem  9862  canthp1lem2  9867  latcl2  17510  clatlem  17573  dirtr  17698  srglz  18994  lmodvsass  19375  lmghm  19519  evlssca  20009  mircgr  26139  dfcgra2  26312  maxsta  32321  lbioc  41220  icccncfext  41600  stoweidlem37  41753  fourierdlem41  41864  fourierdlem48  41870  fourierdlem49  41871  fourierdlem74  41896  fourierdlem75  41897  salgencl  42046  salgenuni  42051  issalgend  42052  smfaddlem1  42470
  Copyright terms: Public domain W3C validator