![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fpwwe2lem5 10704 fpwwe2lem6 10705 fpwwe2lem8 10707 canthnumlem 10717 canthp1lem2 10722 latcl2 18506 clatlem 18572 dirtr 18672 srglz 20235 lmodvsass 20907 lmghm 21053 evlssca 22136 mircgr 28683 dfcgra2 28856 mgcmnt1d 32970 mgcmnt2d 32971 mgcf1o 32976 ssmxidllem 33466 ssmxidl 33467 maxsta 35522 lbioc 45431 icccncfext 45808 stoweidlem37 45958 fourierdlem41 46069 fourierdlem48 46075 fourierdlem49 46076 fourierdlem74 46101 fourierdlem75 46102 salgencl 46253 salgenuni 46258 issalgend 46259 smfaddlem1 46684 |
Copyright terms: Public domain | W3C validator |