![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 488 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 487 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: fpwwe2lem6 9849 fpwwe2lem7 9850 fpwwe2lem9 9852 canthnumlem 9862 canthp1lem2 9867 latcl2 17510 clatlem 17573 dirtr 17698 srglz 18994 lmodvsass 19375 lmghm 19519 evlssca 20009 mircgr 26139 dfcgra2 26312 maxsta 32321 lbioc 41220 icccncfext 41600 stoweidlem37 41753 fourierdlem41 41864 fourierdlem48 41870 fourierdlem49 41871 fourierdlem74 41896 fourierdlem75 41897 salgencl 42046 salgenuni 42051 issalgend 42052 smfaddlem1 42470 |
Copyright terms: Public domain | W3C validator |