| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem5 10533 fpwwe2lem6 10534 fpwwe2lem8 10536 canthnumlem 10546 canthp1lem2 10551 latcl2 18344 clatlem 18410 dirtr 18510 srglz 20128 lmodvsass 20822 lmghm 20967 evlssca 22025 mircgr 28636 dfcgra2 28809 mgcmnt1d 32985 mgcmnt2d 32986 mgcf1o 32991 ssmxidllem 33445 ssmxidl 33446 maxsta 35619 lbioc 45637 icccncfext 46009 stoweidlem37 46159 fourierdlem41 46270 fourierdlem48 46276 fourierdlem49 46277 fourierdlem74 46302 fourierdlem75 46303 salgencl 46454 salgenuni 46459 issalgend 46460 smfaddlem1 46885 funcoppc4 49269 |
| Copyright terms: Public domain | W3C validator |