Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 496 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 495 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fpwwe2lem5 10391 fpwwe2lem6 10392 fpwwe2lem8 10394 canthnumlem 10404 canthp1lem2 10409 latcl2 18154 clatlem 18220 dirtr 18320 srglz 19763 lmodvsass 20148 lmghm 20293 evlssca 21299 mircgr 27018 dfcgra2 27191 mgcmnt1d 31275 mgcmnt2d 31276 mgcf1o 31281 ssmxidllem 31641 ssmxidl 31642 maxsta 33516 lbioc 43051 icccncfext 43428 stoweidlem37 43578 fourierdlem41 43689 fourierdlem48 43695 fourierdlem49 43696 fourierdlem74 43721 fourierdlem75 43722 salgencl 43871 salgenuni 43876 issalgend 43877 smfaddlem1 44298 |
Copyright terms: Public domain | W3C validator |