Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: fpwwe2lem5 10322 fpwwe2lem6 10323 fpwwe2lem8 10325 canthnumlem 10335 canthp1lem2 10340 latcl2 18069 clatlem 18135 dirtr 18235 srglz 19678 lmodvsass 20063 lmghm 20208 evlssca 21209 mircgr 26922 dfcgra2 27095 mgcmnt1d 31177 mgcmnt2d 31178 mgcf1o 31183 ssmxidllem 31543 ssmxidl 31544 maxsta 33416 lbioc 42941 icccncfext 43318 stoweidlem37 43468 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 fourierdlem74 43611 fourierdlem75 43612 salgencl 43761 salgenuni 43766 issalgend 43767 smfaddlem1 44185 |
Copyright terms: Public domain | W3C validator |