| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprld | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprld.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprld.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem5 10523 fpwwe2lem6 10524 fpwwe2lem8 10526 canthnumlem 10536 canthp1lem2 10541 latcl2 18339 clatlem 18405 dirtr 18505 srglz 20124 lmodvsass 20818 lmghm 20963 evlssca 22022 mircgr 28633 dfcgra2 28806 mgcmnt1d 32973 mgcmnt2d 32974 mgcf1o 32979 ssmxidllem 33433 ssmxidl 33434 maxsta 35586 lbioc 45552 icccncfext 45924 stoweidlem37 46074 fourierdlem41 46185 fourierdlem48 46191 fourierdlem49 46192 fourierdlem74 46217 fourierdlem75 46218 salgencl 46369 salgenuni 46374 issalgend 46375 smfaddlem1 46800 funcoppc4 49175 |
| Copyright terms: Public domain | W3C validator |