|   | Mathbox for Jeff Hankins | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsint2 | Structured version Visualization version GIF version | ||
| Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.) | 
| Ref | Expression | 
|---|---|
| clsint2.1 | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| clsint2 | ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sspwuni 5100 | . . . 4 ⊢ (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 ⊆ 𝑋) | |
| 2 | elssuni 4937 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝐶 → 𝑐 ⊆ ∪ 𝐶) | |
| 3 | sstr2 3990 | . . . . . . . 8 ⊢ (𝑐 ⊆ ∪ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑐 ∈ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | 
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | 
| 6 | intss1 4963 | . . . . . . . . 9 ⊢ (𝑐 ∈ 𝐶 → ∩ 𝐶 ⊆ 𝑐) | |
| 7 | clsint2.1 | . . . . . . . . . 10 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | clsss 23062 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ∩ 𝐶 ⊆ 𝑐) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | 
| 9 | 6, 8 | syl3an3 1166 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ 𝑐 ∈ 𝐶) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | 
| 10 | 9 | 3com23 1127 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ∧ 𝑐 ⊆ 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | 
| 11 | 10 | 3expia 1122 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (𝑐 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) | 
| 12 | 5, 11 | syld 47 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) | 
| 13 | 12 | impancom 451 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐶 ⊆ 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) | 
| 14 | 1, 13 | sylan2b 594 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) | 
| 15 | 14 | ralrimiv 3145 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | 
| 16 | ssiin 5055 | . 2 ⊢ (((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | |
| 17 | 15, 16 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 ∩ cint 4946 ∩ ciin 4992 ‘cfv 6561 Topctop 22899 clsccl 23026 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-top 22900 df-cld 23027 df-cls 23029 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |