Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsint2 Structured version   Visualization version   GIF version

Theorem clsint2 36317
Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clsint2.1 𝑋 = 𝐽
Assertion
Ref Expression
clsint2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Distinct variable groups:   𝐶,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem clsint2
StepHypRef Expression
1 sspwuni 5064 . . . 4 (𝐶 ⊆ 𝒫 𝑋 𝐶𝑋)
2 elssuni 4901 . . . . . . . 8 (𝑐𝐶𝑐 𝐶)
3 sstr2 3953 . . . . . . . 8 (𝑐 𝐶 → ( 𝐶𝑋𝑐𝑋))
42, 3syl 17 . . . . . . 7 (𝑐𝐶 → ( 𝐶𝑋𝑐𝑋))
54adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋𝑐𝑋))
6 intss1 4927 . . . . . . . . 9 (𝑐𝐶 𝐶𝑐)
7 clsint2.1 . . . . . . . . . 10 𝑋 = 𝐽
87clsss 22941 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋 𝐶𝑐) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
96, 8syl3an3 1165 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋𝑐𝐶) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1093com23 1126 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝐶𝑐𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
11103expia 1121 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → (𝑐𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
125, 11syld 47 . . . . 5 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1312impancom 451 . . . 4 ((𝐽 ∈ Top ∧ 𝐶𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
141, 13sylan2b 594 . . 3 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1514ralrimiv 3124 . 2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
16 ssiin 5019 . 2 (((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1715, 16sylibr 234 1 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  𝒫 cpw 4563   cuni 4871   cint 4910   ciin 4956  cfv 6511  Topctop 22780  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-cls 22908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator