![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsint2 | Structured version Visualization version GIF version |
Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
clsint2.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsint2 | ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5096 | . . . 4 ⊢ (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 ⊆ 𝑋) | |
2 | elssuni 4934 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝐶 → 𝑐 ⊆ ∪ 𝐶) | |
3 | sstr2 3984 | . . . . . . . 8 ⊢ (𝑐 ⊆ ∪ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑐 ∈ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
6 | intss1 4960 | . . . . . . . . 9 ⊢ (𝑐 ∈ 𝐶 → ∩ 𝐶 ⊆ 𝑐) | |
7 | clsint2.1 | . . . . . . . . . 10 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | clsss 22909 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ∩ 𝐶 ⊆ 𝑐) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
9 | 6, 8 | syl3an3 1162 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ 𝑐 ∈ 𝐶) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
10 | 9 | 3com23 1123 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ∧ 𝑐 ⊆ 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
11 | 10 | 3expia 1118 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (𝑐 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
12 | 5, 11 | syld 47 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
13 | 12 | impancom 451 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐶 ⊆ 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
14 | 1, 13 | sylan2b 593 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
15 | 14 | ralrimiv 3139 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
16 | ssiin 5051 | . 2 ⊢ (((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | |
17 | 15, 16 | sylibr 233 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 ∩ cint 4943 ∩ ciin 4991 ‘cfv 6536 Topctop 22746 clsccl 22873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-top 22747 df-cld 22874 df-cls 22876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |