Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsint2 Structured version   Visualization version   GIF version

Theorem clsint2 36324
Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clsint2.1 𝑋 = 𝐽
Assertion
Ref Expression
clsint2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Distinct variable groups:   𝐶,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem clsint2
StepHypRef Expression
1 sspwuni 5067 . . . 4 (𝐶 ⊆ 𝒫 𝑋 𝐶𝑋)
2 elssuni 4904 . . . . . . . 8 (𝑐𝐶𝑐 𝐶)
3 sstr2 3956 . . . . . . . 8 (𝑐 𝐶 → ( 𝐶𝑋𝑐𝑋))
42, 3syl 17 . . . . . . 7 (𝑐𝐶 → ( 𝐶𝑋𝑐𝑋))
54adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋𝑐𝑋))
6 intss1 4930 . . . . . . . . 9 (𝑐𝐶 𝐶𝑐)
7 clsint2.1 . . . . . . . . . 10 𝑋 = 𝐽
87clsss 22948 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋 𝐶𝑐) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
96, 8syl3an3 1165 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋𝑐𝐶) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1093com23 1126 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝐶𝑐𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
11103expia 1121 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → (𝑐𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
125, 11syld 47 . . . . 5 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1312impancom 451 . . . 4 ((𝐽 ∈ Top ∧ 𝐶𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
141, 13sylan2b 594 . . 3 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1514ralrimiv 3125 . 2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
16 ssiin 5022 . 2 (((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1715, 16sylibr 234 1 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  𝒫 cpw 4566   cuni 4874   cint 4913   ciin 4959  cfv 6514  Topctop 22787  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-cls 22915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator