Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsint2 Structured version   Visualization version   GIF version

Theorem clsint2 34518
Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clsint2.1 𝑋 = 𝐽
Assertion
Ref Expression
clsint2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Distinct variable groups:   𝐶,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem clsint2
StepHypRef Expression
1 sspwuni 5029 . . . 4 (𝐶 ⊆ 𝒫 𝑋 𝐶𝑋)
2 elssuni 4871 . . . . . . . 8 (𝑐𝐶𝑐 𝐶)
3 sstr2 3928 . . . . . . . 8 (𝑐 𝐶 → ( 𝐶𝑋𝑐𝑋))
42, 3syl 17 . . . . . . 7 (𝑐𝐶 → ( 𝐶𝑋𝑐𝑋))
54adantl 482 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋𝑐𝑋))
6 intss1 4894 . . . . . . . . 9 (𝑐𝐶 𝐶𝑐)
7 clsint2.1 . . . . . . . . . 10 𝑋 = 𝐽
87clsss 22205 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋 𝐶𝑐) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
96, 8syl3an3 1164 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋𝑐𝐶) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1093com23 1125 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝐶𝑐𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
11103expia 1120 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → (𝑐𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
125, 11syld 47 . . . . 5 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1312impancom 452 . . . 4 ((𝐽 ∈ Top ∧ 𝐶𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
141, 13sylan2b 594 . . 3 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1514ralrimiv 3102 . 2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
16 ssiin 4985 . 2 (((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1715, 16sylibr 233 1 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  𝒫 cpw 4533   cuni 4839   cint 4879   ciin 4925  cfv 6433  Topctop 22042  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator