| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsint2 | Structured version Visualization version GIF version | ||
| Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clsint2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsint2 | ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni 5067 | . . . 4 ⊢ (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 ⊆ 𝑋) | |
| 2 | elssuni 4904 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝐶 → 𝑐 ⊆ ∪ 𝐶) | |
| 3 | sstr2 3956 | . . . . . . . 8 ⊢ (𝑐 ⊆ ∪ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑐 ∈ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
| 6 | intss1 4930 | . . . . . . . . 9 ⊢ (𝑐 ∈ 𝐶 → ∩ 𝐶 ⊆ 𝑐) | |
| 7 | clsint2.1 | . . . . . . . . . 10 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | clsss 22948 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ∩ 𝐶 ⊆ 𝑐) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 9 | 6, 8 | syl3an3 1165 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ 𝑐 ∈ 𝐶) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 10 | 9 | 3com23 1126 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ∧ 𝑐 ⊆ 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 11 | 10 | 3expia 1121 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (𝑐 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 12 | 5, 11 | syld 47 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 13 | 12 | impancom 451 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐶 ⊆ 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 14 | 1, 13 | sylan2b 594 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 15 | 14 | ralrimiv 3125 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 16 | ssiin 5022 | . 2 ⊢ (((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | |
| 17 | 15, 16 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ∩ cint 4913 ∩ ciin 4959 ‘cfv 6514 Topctop 22787 clsccl 22912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-top 22788 df-cld 22913 df-cls 22915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |