| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsint2 | Structured version Visualization version GIF version | ||
| Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clsint2.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsint2 | ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni 5080 | . . . 4 ⊢ (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 ⊆ 𝑋) | |
| 2 | elssuni 4917 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝐶 → 𝑐 ⊆ ∪ 𝐶) | |
| 3 | sstr2 3970 | . . . . . . . 8 ⊢ (𝑐 ⊆ ∪ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑐 ∈ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
| 6 | intss1 4943 | . . . . . . . . 9 ⊢ (𝑐 ∈ 𝐶 → ∩ 𝐶 ⊆ 𝑐) | |
| 7 | clsint2.1 | . . . . . . . . . 10 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | clsss 23008 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ∩ 𝐶 ⊆ 𝑐) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 9 | 6, 8 | syl3an3 1165 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ 𝑐 ∈ 𝐶) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 10 | 9 | 3com23 1126 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ∧ 𝑐 ⊆ 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 11 | 10 | 3expia 1121 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (𝑐 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 12 | 5, 11 | syld 47 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 13 | 12 | impancom 451 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐶 ⊆ 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 14 | 1, 13 | sylan2b 594 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
| 15 | 14 | ralrimiv 3132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
| 16 | ssiin 5035 | . 2 ⊢ (((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | |
| 17 | 15, 16 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4887 ∩ cint 4926 ∩ ciin 4972 ‘cfv 6541 Topctop 22847 clsccl 22972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-top 22848 df-cld 22973 df-cls 22975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |