Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsint2 Structured version   Visualization version   GIF version

Theorem clsint2 36312
Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clsint2.1 𝑋 = 𝐽
Assertion
Ref Expression
clsint2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Distinct variable groups:   𝐶,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem clsint2
StepHypRef Expression
1 sspwuni 5105 . . . 4 (𝐶 ⊆ 𝒫 𝑋 𝐶𝑋)
2 elssuni 4942 . . . . . . . 8 (𝑐𝐶𝑐 𝐶)
3 sstr2 4002 . . . . . . . 8 (𝑐 𝐶 → ( 𝐶𝑋𝑐𝑋))
42, 3syl 17 . . . . . . 7 (𝑐𝐶 → ( 𝐶𝑋𝑐𝑋))
54adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋𝑐𝑋))
6 intss1 4968 . . . . . . . . 9 (𝑐𝐶 𝐶𝑐)
7 clsint2.1 . . . . . . . . . 10 𝑋 = 𝐽
87clsss 23078 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋 𝐶𝑐) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
96, 8syl3an3 1164 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋𝑐𝐶) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1093com23 1125 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝐶𝑐𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
11103expia 1120 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑐𝐶) → (𝑐𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
125, 11syld 47 . . . . 5 ((𝐽 ∈ Top ∧ 𝑐𝐶) → ( 𝐶𝑋 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1312impancom 451 . . . 4 ((𝐽 ∈ Top ∧ 𝐶𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
141, 13sylan2b 594 . . 3 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐𝐶 → ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)))
1514ralrimiv 3143 . 2 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
16 ssiin 5060 . 2 (((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐𝐶 ((cls‘𝐽)‘ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))
1715, 16sylibr 234 1 ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  𝒫 cpw 4605   cuni 4912   cint 4951   ciin 4997  cfv 6563  Topctop 22915  clsccl 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-top 22916  df-cld 23043  df-cls 23045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator