![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsint2 | Structured version Visualization version GIF version |
Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
clsint2.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsint2 | ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5123 | . . . 4 ⊢ (𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 ⊆ 𝑋) | |
2 | elssuni 4961 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝐶 → 𝑐 ⊆ ∪ 𝐶) | |
3 | sstr2 4015 | . . . . . . . 8 ⊢ (𝑐 ⊆ ∪ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑐 ∈ 𝐶 → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋)) |
6 | intss1 4987 | . . . . . . . . 9 ⊢ (𝑐 ∈ 𝐶 → ∩ 𝐶 ⊆ 𝑐) | |
7 | clsint2.1 | . . . . . . . . . 10 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | clsss 23083 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ∩ 𝐶 ⊆ 𝑐) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
9 | 6, 8 | syl3an3 1165 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ 𝑐 ∈ 𝐶) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
10 | 9 | 3com23 1126 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ∧ 𝑐 ⊆ 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
11 | 10 | 3expia 1121 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (𝑐 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
12 | 5, 11 | syld 47 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶) → (∪ 𝐶 ⊆ 𝑋 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
13 | 12 | impancom 451 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐶 ⊆ 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
14 | 1, 13 | sylan2b 593 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → (𝑐 ∈ 𝐶 → ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐))) |
15 | 14 | ralrimiv 3151 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) |
16 | ssiin 5078 | . 2 ⊢ (((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐) ↔ ∀𝑐 ∈ 𝐶 ((cls‘𝐽)‘∩ 𝐶) ⊆ ((cls‘𝐽)‘𝑐)) | |
17 | 15, 16 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘∩ 𝐶) ⊆ ∩ 𝑐 ∈ 𝐶 ((cls‘𝐽)‘𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ∩ cint 4970 ∩ ciin 5016 ‘cfv 6573 Topctop 22920 clsccl 23047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-cld 23048 df-cls 23050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |