MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Visualization version   GIF version

Theorem tpss 4788
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1 𝐴 ∈ V
tpss.2 𝐵 ∈ V
tpss.3 𝐶 ∈ V
Assertion
Ref Expression
tpss ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpss
StepHypRef Expression
1 unss 4139 . 2 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
2 df-3an 1088 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷))
3 tpss.1 . . . . 5 𝐴 ∈ V
4 tpss.2 . . . . 5 𝐵 ∈ V
53, 4prss 4771 . . . 4 ((𝐴𝐷𝐵𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷)
6 tpss.3 . . . . 5 𝐶 ∈ V
76snss 4736 . . . 4 (𝐶𝐷 ↔ {𝐶} ⊆ 𝐷)
85, 7anbi12i 628 . . 3 (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
92, 8bitri 275 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
10 df-tp 4580 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110sseq1i 3959 . 2 ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
121, 9, 113bitr4i 303 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2113  Vcvv 3437  cun 3896  wss 3898  {csn 4575  {cpr 4577  {ctp 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915  df-sn 4576  df-pr 4578  df-tp 4580
This theorem is referenced by:  1cubr  26780  konigsberglem4  30237  rabren3dioph  42932  fourierdlem102  46330  fourierdlem114  46342  nnsum4primesodd  47920  nnsum4primesoddALTV  47921
  Copyright terms: Public domain W3C validator