| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpss | Structured version Visualization version GIF version | ||
| Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpss.1 | ⊢ 𝐴 ∈ V |
| tpss.2 | ⊢ 𝐵 ∈ V |
| tpss.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| tpss | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 4170 | . 2 ⊢ (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷)) | |
| 3 | tpss.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | tpss.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | prss 4801 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷) |
| 6 | tpss.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 7 | 6 | snss 4766 | . . . 4 ⊢ (𝐶 ∈ 𝐷 ↔ {𝐶} ⊆ 𝐷) |
| 8 | 5, 7 | anbi12i 628 | . . 3 ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
| 9 | 2, 8 | bitri 275 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
| 10 | df-tp 4611 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 11 | 10 | sseq1i 3992 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
| 12 | 1, 9, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 {csn 4606 {cpr 4608 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: 1cubr 26809 konigsberglem4 30241 rabren3dioph 42813 fourierdlem102 46217 fourierdlem114 46229 nnsum4primesodd 47790 nnsum4primesoddALTV 47791 |
| Copyright terms: Public domain | W3C validator |