Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpss | Structured version Visualization version GIF version |
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpss.1 | ⊢ 𝐴 ∈ V |
tpss.2 | ⊢ 𝐵 ∈ V |
tpss.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
tpss | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 4132 | . 2 ⊢ (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) | |
2 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷)) | |
3 | tpss.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | tpss.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | prss 4768 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷) |
6 | tpss.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
7 | 6 | snss 4734 | . . . 4 ⊢ (𝐶 ∈ 𝐷 ↔ {𝐶} ⊆ 𝐷) |
8 | 5, 7 | anbi12i 627 | . . 3 ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
9 | 2, 8 | bitri 274 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
10 | df-tp 4579 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
11 | 10 | sseq1i 3960 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
12 | 1, 9, 11 | 3bitr4i 302 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 Vcvv 3441 ∪ cun 3896 ⊆ wss 3898 {csn 4574 {cpr 4576 {ctp 4578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3903 df-in 3905 df-ss 3915 df-sn 4575 df-pr 4577 df-tp 4579 |
This theorem is referenced by: 1cubr 26099 konigsberglem4 28908 rabren3dioph 40950 fourierdlem102 44137 fourierdlem114 44149 nnsum4primesodd 45666 nnsum4primesoddALTV 45667 |
Copyright terms: Public domain | W3C validator |