MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Visualization version   GIF version

Theorem tpss 4837
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1 𝐴 ∈ V
tpss.2 𝐵 ∈ V
tpss.3 𝐶 ∈ V
Assertion
Ref Expression
tpss ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpss
StepHypRef Expression
1 unss 4183 . 2 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
2 df-3an 1089 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷))
3 tpss.1 . . . . 5 𝐴 ∈ V
4 tpss.2 . . . . 5 𝐵 ∈ V
53, 4prss 4822 . . . 4 ((𝐴𝐷𝐵𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷)
6 tpss.3 . . . . 5 𝐶 ∈ V
76snss 4788 . . . 4 (𝐶𝐷 ↔ {𝐶} ⊆ 𝐷)
85, 7anbi12i 627 . . 3 (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
92, 8bitri 274 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
10 df-tp 4632 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110sseq1i 4009 . 2 ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
121, 9, 113bitr4i 302 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087  wcel 2106  Vcvv 3474  cun 3945  wss 3947  {csn 4627  {cpr 4629  {ctp 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-sn 4628  df-pr 4630  df-tp 4632
This theorem is referenced by:  1cubr  26336  konigsberglem4  29497  rabren3dioph  41538  fourierdlem102  44910  fourierdlem114  44922  nnsum4primesodd  46450  nnsum4primesoddALTV  46451
  Copyright terms: Public domain W3C validator