MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Visualization version   GIF version

Theorem tpss 4796
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1 𝐴 ∈ V
tpss.2 𝐵 ∈ V
tpss.3 𝐶 ∈ V
Assertion
Ref Expression
tpss ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpss
StepHypRef Expression
1 unss 4145 . 2 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
2 df-3an 1090 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷))
3 tpss.1 . . . . 5 𝐴 ∈ V
4 tpss.2 . . . . 5 𝐵 ∈ V
53, 4prss 4781 . . . 4 ((𝐴𝐷𝐵𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷)
6 tpss.3 . . . . 5 𝐶 ∈ V
76snss 4747 . . . 4 (𝐶𝐷 ↔ {𝐶} ⊆ 𝐷)
85, 7anbi12i 628 . . 3 (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
92, 8bitri 275 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
10 df-tp 4592 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110sseq1i 3973 . 2 ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
121, 9, 113bitr4i 303 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088  wcel 2107  Vcvv 3444  cun 3909  wss 3911  {csn 4587  {cpr 4589  {ctp 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3446  df-un 3916  df-in 3918  df-ss 3928  df-sn 4588  df-pr 4590  df-tp 4592
This theorem is referenced by:  1cubr  26208  konigsberglem4  29241  rabren3dioph  41181  fourierdlem102  44535  fourierdlem114  44547  nnsum4primesodd  46074  nnsum4primesoddALTV  46075
  Copyright terms: Public domain W3C validator