MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Visualization version   GIF version

Theorem tpss 4834
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1 𝐴 ∈ V
tpss.2 𝐵 ∈ V
tpss.3 𝐶 ∈ V
Assertion
Ref Expression
tpss ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpss
StepHypRef Expression
1 unss 4180 . 2 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
2 df-3an 1087 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷))
3 tpss.1 . . . . 5 𝐴 ∈ V
4 tpss.2 . . . . 5 𝐵 ∈ V
53, 4prss 4819 . . . 4 ((𝐴𝐷𝐵𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷)
6 tpss.3 . . . . 5 𝐶 ∈ V
76snss 4785 . . . 4 (𝐶𝐷 ↔ {𝐶} ⊆ 𝐷)
85, 7anbi12i 627 . . 3 (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
92, 8bitri 275 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷))
10 df-tp 4629 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110sseq1i 4006 . 2 ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
121, 9, 113bitr4i 303 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085  wcel 2099  Vcvv 3470  cun 3943  wss 3945  {csn 4624  {cpr 4626  {ctp 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-un 3950  df-in 3952  df-ss 3962  df-sn 4625  df-pr 4627  df-tp 4629
This theorem is referenced by:  1cubr  26767  konigsberglem4  30058  rabren3dioph  42229  fourierdlem102  45590  fourierdlem114  45602  nnsum4primesodd  47130  nnsum4primesoddALTV  47131
  Copyright terms: Public domain W3C validator