MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexb Structured version   Visualization version   GIF version

Theorem sucexb 7803
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb (𝐴 ∈ V ↔ suc 𝐴 ∈ V)

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 7746 . 2 ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V)
2 snex 5411 . . 3 {𝐴} ∈ V
32biantru 529 . 2 (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V))
4 df-suc 6363 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq1i 2826 . 2 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
61, 3, 53bitr4i 303 1 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3464  cun 3929  {csn 4606  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4889  df-suc 6363
This theorem is referenced by:  sucexg  7804  onsucb  7816  ordsucelsuc  7821  oeordi  8604  suc11reg  9638  rankxpsuc  9901  isf32lem2  10373  limsucncmpi  36468
  Copyright terms: Public domain W3C validator