Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucexb | Structured version Visualization version GIF version |
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
Ref | Expression |
---|---|
sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexb 7630 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
2 | snex 5363 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | biantru 531 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
4 | df-suc 6287 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | eleq1i 2827 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
6 | 1, 3, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 ∪ cun 3890 {csn 4565 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4566 df-pr 4568 df-uni 4845 df-suc 6287 |
This theorem is referenced by: sucexg 7687 sucelon 7696 ordsucelsuc 7701 oeordi 8449 suc11reg 9425 rankxpsuc 9688 isf32lem2 10160 limsucncmpi 34683 |
Copyright terms: Public domain | W3C validator |