MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexb Structured version   Visualization version   GIF version

Theorem sucexb 7686
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb (𝐴 ∈ V ↔ suc 𝐴 ∈ V)

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 7630 . 2 ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V)
2 snex 5363 . . 3 {𝐴} ∈ V
32biantru 531 . 2 (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V))
4 df-suc 6287 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq1i 2827 . 2 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
61, 3, 53bitr4i 303 1 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2104  Vcvv 3437  cun 3890  {csn 4565  suc csuc 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4566  df-pr 4568  df-uni 4845  df-suc 6287
This theorem is referenced by:  sucexg  7687  sucelon  7696  ordsucelsuc  7701  oeordi  8449  suc11reg  9425  rankxpsuc  9688  isf32lem2  10160  limsucncmpi  34683
  Copyright terms: Public domain W3C validator