MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexb Structured version   Visualization version   GIF version

Theorem sucexb 7732
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb (𝐴 ∈ V ↔ suc 𝐴 ∈ V)

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 7675 . 2 ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V)
2 snex 5369 . . 3 {𝐴} ∈ V
32biantru 529 . 2 (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V))
4 df-suc 6307 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq1i 2822 . 2 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
61, 3, 53bitr4i 303 1 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Vcvv 3436  cun 3895  {csn 4571  suc csuc 6303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-sn 4572  df-pr 4574  df-uni 4855  df-suc 6307
This theorem is referenced by:  sucexg  7733  onsucb  7742  ordsucelsuc  7747  oeordi  8497  suc11reg  9504  rankxpsuc  9770  isf32lem2  10240  limsucncmpi  36479
  Copyright terms: Public domain W3C validator