Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucexb | Structured version Visualization version GIF version |
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
Ref | Expression |
---|---|
sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexb 7489 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
2 | snex 5298 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | biantru 533 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
4 | df-suc 6178 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | eleq1i 2823 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
6 | 1, 3, 5 | 3bitr4i 306 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2114 Vcvv 3398 ∪ cun 3841 {csn 4516 suc csuc 6174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-sn 4517 df-pr 4519 df-uni 4797 df-suc 6178 |
This theorem is referenced by: sucexg 7544 sucelon 7551 ordsucelsuc 7556 oeordi 8244 suc11reg 9155 rankxpsuc 9384 isf32lem2 9854 limsucncmpi 34272 |
Copyright terms: Public domain | W3C validator |