Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucexb | Structured version Visualization version GIF version |
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
Ref | Expression |
---|---|
sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexb 7589 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
2 | snex 5357 | . . 3 ⊢ {𝐴} ∈ V | |
3 | 2 | biantru 529 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
4 | df-suc 6269 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | eleq1i 2830 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
6 | 1, 3, 5 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Vcvv 3430 ∪ cun 3889 {csn 4566 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-pr 4569 df-uni 4845 df-suc 6269 |
This theorem is referenced by: sucexg 7645 sucelon 7652 ordsucelsuc 7657 oeordi 8394 suc11reg 9338 rankxpsuc 9624 isf32lem2 10094 limsucncmpi 34613 |
Copyright terms: Public domain | W3C validator |