| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucexb | Structured version Visualization version GIF version | ||
| Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
| Ref | Expression |
|---|---|
| sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexb 7746 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
| 2 | snex 5411 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | biantru 529 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
| 4 | df-suc 6363 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | 4 | eleq1i 2826 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
| 6 | 1, 3, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-suc 6363 |
| This theorem is referenced by: sucexg 7804 onsucb 7816 ordsucelsuc 7821 oeordi 8604 suc11reg 9638 rankxpsuc 9901 isf32lem2 10373 limsucncmpi 36468 |
| Copyright terms: Public domain | W3C validator |