| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucexb | Structured version Visualization version GIF version | ||
| Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
| Ref | Expression |
|---|---|
| sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexb 7723 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
| 2 | snex 5391 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | biantru 529 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
| 4 | df-suc 6338 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | 4 | eleq1i 2819 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
| 6 | 1, 3, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {csn 4589 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-suc 6338 |
| This theorem is referenced by: sucexg 7781 onsucb 7792 ordsucelsuc 7797 oeordi 8551 suc11reg 9572 rankxpsuc 9835 isf32lem2 10307 limsucncmpi 36433 |
| Copyright terms: Public domain | W3C validator |