MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofon2 Structured version   Visualization version   GIF version

Theorem cofon2 8668
Description: Cofinality theorem for ordinals. If 𝐴 and 𝐵 are mutually cofinal, then their upper bounds agree. Compare cofcut2 27398 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypotheses
Ref Expression
cofon2.1 (𝜑𝐴 ∈ 𝒫 On)
cofon2.2 (𝜑𝐵 ∈ 𝒫 On)
cofon2.3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
cofon2.4 (𝜑 → ∀𝑧𝐵𝑤𝐴 𝑧𝑤)
Assertion
Ref Expression
cofon2 (𝜑 {𝑎 ∈ On ∣ 𝐴𝑎} = {𝑏 ∈ On ∣ 𝐵𝑏})
Distinct variable groups:   𝐴,𝑎,𝑏   𝑤,𝐴,𝑧   𝑥,𝐴   𝐵,𝑎,𝑏   𝑥,𝐵,𝑦   𝑧,𝐵   𝜑,𝑎,𝑏   𝑤,𝑏,𝑧   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑦)   𝐵(𝑤)

Proof of Theorem cofon2
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cofon2.1 . 2 (𝜑𝐴 ∈ 𝒫 On)
2 cofon2.3 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
3 sseq1 4006 . . . . . . . 8 (𝑧 = 𝑏 → (𝑧𝑤𝑏𝑤))
43rexbidv 3178 . . . . . . 7 (𝑧 = 𝑏 → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 𝑏𝑤))
5 cofon2.4 . . . . . . . 8 (𝜑 → ∀𝑧𝐵𝑤𝐴 𝑧𝑤)
65adantr 481 . . . . . . 7 ((𝜑𝑏𝐵) → ∀𝑧𝐵𝑤𝐴 𝑧𝑤)
7 simpr 485 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
84, 6, 7rspcdva 3613 . . . . . 6 ((𝜑𝑏𝐵) → ∃𝑤𝐴 𝑏𝑤)
9 sseq2 4007 . . . . . . 7 (𝑤 = 𝑐 → (𝑏𝑤𝑏𝑐))
109cbvrexvw 3235 . . . . . 6 (∃𝑤𝐴 𝑏𝑤 ↔ ∃𝑐𝐴 𝑏𝑐)
118, 10sylib 217 . . . . 5 ((𝜑𝑏𝐵) → ∃𝑐𝐴 𝑏𝑐)
12 ssintub 4969 . . . . . . . . 9 𝐴 {𝑎 ∈ On ∣ 𝐴𝑎}
1312a1i 11 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝐴 {𝑎 ∈ On ∣ 𝐴𝑎})
1413sselda 3981 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝑐 {𝑎 ∈ On ∣ 𝐴𝑎})
15 cofon2.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ 𝒫 On)
1615elpwid 4610 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
1716ad2antrr 724 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝐵 ⊆ On)
18 simplr 767 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝑏𝐵)
1917, 18sseldd 3982 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝑏 ∈ On)
201elpwid 4610 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ On)
21 ssorduni 7762 . . . . . . . . . . . . . 14 (𝐴 ⊆ On → Ord 𝐴)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → Ord 𝐴)
23 ordsuc 7797 . . . . . . . . . . . . 13 (Ord 𝐴 ↔ Ord suc 𝐴)
2422, 23sylib 217 . . . . . . . . . . . 12 (𝜑 → Ord suc 𝐴)
251uniexd 7728 . . . . . . . . . . . . 13 (𝜑 𝐴 ∈ V)
26 sucexg 7789 . . . . . . . . . . . . 13 ( 𝐴 ∈ V → suc 𝐴 ∈ V)
27 elong 6369 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
2825, 26, 273syl 18 . . . . . . . . . . . 12 (𝜑 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
2924, 28mpbird 256 . . . . . . . . . . 11 (𝜑 → suc 𝐴 ∈ On)
30 onsucuni 7812 . . . . . . . . . . . 12 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
3120, 30syl 17 . . . . . . . . . . 11 (𝜑𝐴 ⊆ suc 𝐴)
32 sseq2 4007 . . . . . . . . . . . 12 (𝑎 = suc 𝐴 → (𝐴𝑎𝐴 ⊆ suc 𝐴))
3332rspcev 3612 . . . . . . . . . . 11 ((suc 𝐴 ∈ On ∧ 𝐴 ⊆ suc 𝐴) → ∃𝑎 ∈ On 𝐴𝑎)
3429, 31, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑎 ∈ On 𝐴𝑎)
35 onintrab2 7781 . . . . . . . . . 10 (∃𝑎 ∈ On 𝐴𝑎 {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On)
3634, 35sylib 217 . . . . . . . . 9 (𝜑 {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On)
3736ad2antrr 724 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On)
38 ontr2 6408 . . . . . . . 8 ((𝑏 ∈ On ∧ {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On) → ((𝑏𝑐𝑐 {𝑎 ∈ On ∣ 𝐴𝑎}) → 𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
3919, 37, 38syl2anc 584 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → ((𝑏𝑐𝑐 {𝑎 ∈ On ∣ 𝐴𝑎}) → 𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4014, 39mpan2d 692 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → (𝑏𝑐𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4140rexlimdva 3155 . . . . 5 ((𝜑𝑏𝐵) → (∃𝑐𝐴 𝑏𝑐𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4211, 41mpd 15 . . . 4 ((𝜑𝑏𝐵) → 𝑏 {𝑎 ∈ On ∣ 𝐴𝑎})
4342ex 413 . . 3 (𝜑 → (𝑏𝐵𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4443ssrdv 3987 . 2 (𝜑𝐵 {𝑎 ∈ On ∣ 𝐴𝑎})
451, 2, 44cofon1 8667 1 (𝜑 {𝑎 ∈ On ∣ 𝐴𝑎} = {𝑏 ∈ On ∣ 𝐵𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  wss 3947  𝒫 cpw 4601   cuni 4907   cint 4949  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  naddunif  8688
  Copyright terms: Public domain W3C validator