| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cofon2.1 | . 2
⊢ (𝜑 → 𝐴 ∈ 𝒫 On) | 
| 2 |  | cofon2.3 | . 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) | 
| 3 |  | sseq1 4008 | . . . . . . . 8
⊢ (𝑧 = 𝑏 → (𝑧 ⊆ 𝑤 ↔ 𝑏 ⊆ 𝑤)) | 
| 4 | 3 | rexbidv 3178 | . . . . . . 7
⊢ (𝑧 = 𝑏 → (∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤)) | 
| 5 |  | cofon2.4 | . . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) | 
| 6 | 5 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) | 
| 7 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | 
| 8 | 4, 6, 7 | rspcdva 3622 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∃𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤) | 
| 9 |  | sseq2 4009 | . . . . . . 7
⊢ (𝑤 = 𝑐 → (𝑏 ⊆ 𝑤 ↔ 𝑏 ⊆ 𝑐)) | 
| 10 | 9 | cbvrexvw 3237 | . . . . . 6
⊢
(∃𝑤 ∈
𝐴 𝑏 ⊆ 𝑤 ↔ ∃𝑐 ∈ 𝐴 𝑏 ⊆ 𝑐) | 
| 11 | 8, 10 | sylib 218 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∃𝑐 ∈ 𝐴 𝑏 ⊆ 𝑐) | 
| 12 |  | ssintub 4965 | . . . . . . . . 9
⊢ 𝐴 ⊆ ∩ {𝑎
∈ On ∣ 𝐴 ⊆
𝑎} | 
| 13 | 12 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐴 ⊆ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) | 
| 14 | 13 | sselda 3982 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) | 
| 15 |  | cofon2.2 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ 𝒫 On) | 
| 16 | 15 | elpwid 4608 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ On) | 
| 17 | 16 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → 𝐵 ⊆ On) | 
| 18 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → 𝑏 ∈ 𝐵) | 
| 19 | 17, 18 | sseldd 3983 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → 𝑏 ∈ On) | 
| 20 | 1 | elpwid 4608 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ On) | 
| 21 |  | ssorduni 7800 | . . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → Ord ∪ 𝐴) | 
| 23 |  | ordsuc 7834 | . . . . . . . . . . . . 13
⊢ (Ord
∪ 𝐴 ↔ Ord suc ∪
𝐴) | 
| 24 | 22, 23 | sylib 218 | . . . . . . . . . . . 12
⊢ (𝜑 → Ord suc ∪ 𝐴) | 
| 25 | 1 | uniexd 7763 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝐴
∈ V) | 
| 26 |  | sucexg 7826 | . . . . . . . . . . . . 13
⊢ (∪ 𝐴
∈ V → suc ∪ 𝐴 ∈ V) | 
| 27 |  | elong 6391 | . . . . . . . . . . . . 13
⊢ (suc
∪ 𝐴 ∈ V → (suc ∪ 𝐴
∈ On ↔ Ord suc ∪ 𝐴)) | 
| 28 | 25, 26, 27 | 3syl 18 | . . . . . . . . . . . 12
⊢ (𝜑 → (suc ∪ 𝐴
∈ On ↔ Ord suc ∪ 𝐴)) | 
| 29 | 24, 28 | mpbird 257 | . . . . . . . . . . 11
⊢ (𝜑 → suc ∪ 𝐴
∈ On) | 
| 30 |  | onsucuni 7849 | . . . . . . . . . . . 12
⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | 
| 31 | 20, 30 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ suc ∪
𝐴) | 
| 32 |  | sseq2 4009 | . . . . . . . . . . . 12
⊢ (𝑎 = suc ∪ 𝐴
→ (𝐴 ⊆ 𝑎 ↔ 𝐴 ⊆ suc ∪
𝐴)) | 
| 33 | 32 | rspcev 3621 | . . . . . . . . . . 11
⊢ ((suc
∪ 𝐴 ∈ On ∧ 𝐴 ⊆ suc ∪
𝐴) → ∃𝑎 ∈ On 𝐴 ⊆ 𝑎) | 
| 34 | 29, 31, 33 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → ∃𝑎 ∈ On 𝐴 ⊆ 𝑎) | 
| 35 |  | onintrab2 7818 | . . . . . . . . . 10
⊢
(∃𝑎 ∈ On
𝐴 ⊆ 𝑎 ↔ ∩ {𝑎
∈ On ∣ 𝐴 ⊆
𝑎} ∈
On) | 
| 36 | 34, 35 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → ∩ {𝑎
∈ On ∣ 𝐴 ⊆
𝑎} ∈
On) | 
| 37 | 36 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎} ∈ On) | 
| 38 |  | ontr2 6430 | . . . . . . . 8
⊢ ((𝑏 ∈ On ∧ ∩ {𝑎
∈ On ∣ 𝐴 ⊆
𝑎} ∈ On) →
((𝑏 ⊆ 𝑐 ∧ 𝑐 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) → 𝑏 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎})) | 
| 39 | 19, 37, 38 | syl2anc 584 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → ((𝑏 ⊆ 𝑐 ∧ 𝑐 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) → 𝑏 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎})) | 
| 40 | 14, 39 | mpan2d 694 | . . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐴) → (𝑏 ⊆ 𝑐 → 𝑏 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎})) | 
| 41 | 40 | rexlimdva 3154 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (∃𝑐 ∈ 𝐴 𝑏 ⊆ 𝑐 → 𝑏 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎})) | 
| 42 | 11, 41 | mpd 15 | . . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) | 
| 43 | 42 | ex 412 | . . 3
⊢ (𝜑 → (𝑏 ∈ 𝐵 → 𝑏 ∈ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎})) | 
| 44 | 43 | ssrdv 3988 | . 2
⊢ (𝜑 → 𝐵 ⊆ ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) | 
| 45 | 1, 2, 44 | cofon1 8711 | 1
⊢ (𝜑 → ∩ {𝑎
∈ On ∣ 𝐴 ⊆
𝑎} = ∩ {𝑏
∈ On ∣ 𝐵 ⊆
𝑏}) |