MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofon2 Structured version   Visualization version   GIF version

Theorem cofon2 8588
Description: Cofinality theorem for ordinals. If 𝐴 and 𝐵 are mutually cofinal, then their upper bounds agree. Compare cofcut2 27866 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypotheses
Ref Expression
cofon2.1 (𝜑𝐴 ∈ 𝒫 On)
cofon2.2 (𝜑𝐵 ∈ 𝒫 On)
cofon2.3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
cofon2.4 (𝜑 → ∀𝑧𝐵𝑤𝐴 𝑧𝑤)
Assertion
Ref Expression
cofon2 (𝜑 {𝑎 ∈ On ∣ 𝐴𝑎} = {𝑏 ∈ On ∣ 𝐵𝑏})
Distinct variable groups:   𝐴,𝑎,𝑏   𝑤,𝐴,𝑧   𝑥,𝐴   𝐵,𝑎,𝑏   𝑥,𝐵,𝑦   𝑧,𝐵   𝜑,𝑎,𝑏   𝑤,𝑏,𝑧   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑦)   𝐵(𝑤)

Proof of Theorem cofon2
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 cofon2.1 . 2 (𝜑𝐴 ∈ 𝒫 On)
2 cofon2.3 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
3 sseq1 3955 . . . . . . . 8 (𝑧 = 𝑏 → (𝑧𝑤𝑏𝑤))
43rexbidv 3156 . . . . . . 7 (𝑧 = 𝑏 → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 𝑏𝑤))
5 cofon2.4 . . . . . . . 8 (𝜑 → ∀𝑧𝐵𝑤𝐴 𝑧𝑤)
65adantr 480 . . . . . . 7 ((𝜑𝑏𝐵) → ∀𝑧𝐵𝑤𝐴 𝑧𝑤)
7 simpr 484 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
84, 6, 7rspcdva 3573 . . . . . 6 ((𝜑𝑏𝐵) → ∃𝑤𝐴 𝑏𝑤)
9 sseq2 3956 . . . . . . 7 (𝑤 = 𝑐 → (𝑏𝑤𝑏𝑐))
109cbvrexvw 3211 . . . . . 6 (∃𝑤𝐴 𝑏𝑤 ↔ ∃𝑐𝐴 𝑏𝑐)
118, 10sylib 218 . . . . 5 ((𝜑𝑏𝐵) → ∃𝑐𝐴 𝑏𝑐)
12 ssintub 4914 . . . . . . . . 9 𝐴 {𝑎 ∈ On ∣ 𝐴𝑎}
1312a1i 11 . . . . . . . 8 ((𝜑𝑏𝐵) → 𝐴 {𝑎 ∈ On ∣ 𝐴𝑎})
1413sselda 3929 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝑐 {𝑎 ∈ On ∣ 𝐴𝑎})
15 cofon2.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ 𝒫 On)
1615elpwid 4556 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
1716ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝐵 ⊆ On)
18 simplr 768 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝑏𝐵)
1917, 18sseldd 3930 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → 𝑏 ∈ On)
201elpwid 4556 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ On)
21 ssorduni 7712 . . . . . . . . . . . . . 14 (𝐴 ⊆ On → Ord 𝐴)
2220, 21syl 17 . . . . . . . . . . . . 13 (𝜑 → Ord 𝐴)
23 ordsuc 7744 . . . . . . . . . . . . 13 (Ord 𝐴 ↔ Ord suc 𝐴)
2422, 23sylib 218 . . . . . . . . . . . 12 (𝜑 → Ord suc 𝐴)
251uniexd 7675 . . . . . . . . . . . . 13 (𝜑 𝐴 ∈ V)
26 sucexg 7738 . . . . . . . . . . . . 13 ( 𝐴 ∈ V → suc 𝐴 ∈ V)
27 elong 6314 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
2825, 26, 273syl 18 . . . . . . . . . . . 12 (𝜑 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
2924, 28mpbird 257 . . . . . . . . . . 11 (𝜑 → suc 𝐴 ∈ On)
30 onsucuni 7758 . . . . . . . . . . . 12 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
3120, 30syl 17 . . . . . . . . . . 11 (𝜑𝐴 ⊆ suc 𝐴)
32 sseq2 3956 . . . . . . . . . . . 12 (𝑎 = suc 𝐴 → (𝐴𝑎𝐴 ⊆ suc 𝐴))
3332rspcev 3572 . . . . . . . . . . 11 ((suc 𝐴 ∈ On ∧ 𝐴 ⊆ suc 𝐴) → ∃𝑎 ∈ On 𝐴𝑎)
3429, 31, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑎 ∈ On 𝐴𝑎)
35 onintrab2 7730 . . . . . . . . . 10 (∃𝑎 ∈ On 𝐴𝑎 {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On)
3634, 35sylib 218 . . . . . . . . 9 (𝜑 {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On)
3736ad2antrr 726 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On)
38 ontr2 6354 . . . . . . . 8 ((𝑏 ∈ On ∧ {𝑎 ∈ On ∣ 𝐴𝑎} ∈ On) → ((𝑏𝑐𝑐 {𝑎 ∈ On ∣ 𝐴𝑎}) → 𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
3919, 37, 38syl2anc 584 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → ((𝑏𝑐𝑐 {𝑎 ∈ On ∣ 𝐴𝑎}) → 𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4014, 39mpan2d 694 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑐𝐴) → (𝑏𝑐𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4140rexlimdva 3133 . . . . 5 ((𝜑𝑏𝐵) → (∃𝑐𝐴 𝑏𝑐𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4211, 41mpd 15 . . . 4 ((𝜑𝑏𝐵) → 𝑏 {𝑎 ∈ On ∣ 𝐴𝑎})
4342ex 412 . . 3 (𝜑 → (𝑏𝐵𝑏 {𝑎 ∈ On ∣ 𝐴𝑎}))
4443ssrdv 3935 . 2 (𝜑𝐵 {𝑎 ∈ On ∣ 𝐴𝑎})
451, 2, 44cofon1 8587 1 (𝜑 {𝑎 ∈ On ∣ 𝐴𝑎} = {𝑏 ∈ On ∣ 𝐵𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4547   cuni 4856   cint 4895  Ord word 6305  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by:  naddunif  8608
  Copyright terms: Public domain W3C validator