MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofon1 Structured version   Visualization version   GIF version

Theorem cofon1 8728
Description: Cofinality theorem for ordinals. If 𝐴 is cofinal with 𝐵 and the upper bound of 𝐴 dominates 𝐵, then their upper bounds are equal. Compare with cofcut1 27972 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypotheses
Ref Expression
cofon1.1 (𝜑𝐴 ∈ 𝒫 On)
cofon1.2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
cofon1.3 (𝜑𝐵 {𝑧 ∈ On ∣ 𝐴𝑧})
Assertion
Ref Expression
cofon1 (𝜑 {𝑧 ∈ On ∣ 𝐴𝑧} = {𝑤 ∈ On ∣ 𝐵𝑤})
Distinct variable groups:   𝑤,𝐴   𝑥,𝐴   𝑧,𝐴   𝑤,𝐵   𝑥,𝐵,𝑦   𝑧,𝐵   𝜑,𝑧   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝐴(𝑦)

Proof of Theorem cofon1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 4035 . . . . 5 (𝑤 = 𝑧 → (𝐵𝑤𝐵𝑧))
21cbvrabv 3454 . . . 4 {𝑤 ∈ On ∣ 𝐵𝑤} = {𝑧 ∈ On ∣ 𝐵𝑧}
3 sseq1 4034 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (𝑥𝑦𝑎𝑦))
43rexbidv 3185 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 𝑎𝑦))
5 cofon1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
65ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
7 simprr 772 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → 𝑎𝐴)
84, 6, 7rspcdva 3636 . . . . . . . . . 10 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → ∃𝑦𝐵 𝑎𝑦)
9 sseq2 4035 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎𝑦𝑎𝑏))
109cbvrexvw 3244 . . . . . . . . . 10 (∃𝑦𝐵 𝑎𝑦 ↔ ∃𝑏𝐵 𝑎𝑏)
118, 10sylib 218 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → ∃𝑏𝐵 𝑎𝑏)
12 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → 𝐵𝑧)
1312sselda 4008 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → 𝑏𝑧)
14 cofon1.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ 𝒫 On)
1514elpwid 4631 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ On)
1615ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → 𝐴 ⊆ On)
17 simplrr 777 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → 𝑎𝐴)
1816, 17sseldd 4009 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → 𝑎 ∈ On)
19 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → 𝑧 ∈ On)
20 ontr2 6442 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑧 ∈ On) → ((𝑎𝑏𝑏𝑧) → 𝑎𝑧))
2118, 19, 20syl2anc 583 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → ((𝑎𝑏𝑏𝑧) → 𝑎𝑧))
2213, 21mpan2d 693 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) ∧ 𝑏𝐵) → (𝑎𝑏𝑎𝑧))
2322rexlimdva 3161 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → (∃𝑏𝐵 𝑎𝑏𝑎𝑧))
2411, 23mpd 15 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝐵𝑧𝑎𝐴)) → 𝑎𝑧)
2524expr 456 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ 𝐵𝑧) → (𝑎𝐴𝑎𝑧))
2625ssrdv 4014 . . . . . 6 (((𝜑𝑧 ∈ On) ∧ 𝐵𝑧) → 𝐴𝑧)
2726ex 412 . . . . 5 ((𝜑𝑧 ∈ On) → (𝐵𝑧𝐴𝑧))
2827ss2rabdv 4099 . . . 4 (𝜑 → {𝑧 ∈ On ∣ 𝐵𝑧} ⊆ {𝑧 ∈ On ∣ 𝐴𝑧})
292, 28eqsstrid 4057 . . 3 (𝜑 → {𝑤 ∈ On ∣ 𝐵𝑤} ⊆ {𝑧 ∈ On ∣ 𝐴𝑧})
30 intss 4993 . . 3 ({𝑤 ∈ On ∣ 𝐵𝑤} ⊆ {𝑧 ∈ On ∣ 𝐴𝑧} → {𝑧 ∈ On ∣ 𝐴𝑧} ⊆ {𝑤 ∈ On ∣ 𝐵𝑤})
3129, 30syl 17 . 2 (𝜑 {𝑧 ∈ On ∣ 𝐴𝑧} ⊆ {𝑤 ∈ On ∣ 𝐵𝑤})
32 sseq2 4035 . . . 4 (𝑤 = {𝑧 ∈ On ∣ 𝐴𝑧} → (𝐵𝑤𝐵 {𝑧 ∈ On ∣ 𝐴𝑧}))
33 ssorduni 7814 . . . . . . . . 9 (𝐴 ⊆ On → Ord 𝐴)
3415, 33syl 17 . . . . . . . 8 (𝜑 → Ord 𝐴)
35 ordsuc 7849 . . . . . . . 8 (Ord 𝐴 ↔ Ord suc 𝐴)
3634, 35sylib 218 . . . . . . 7 (𝜑 → Ord suc 𝐴)
3714uniexd 7777 . . . . . . . . 9 (𝜑 𝐴 ∈ V)
38 sucexg 7841 . . . . . . . . 9 ( 𝐴 ∈ V → suc 𝐴 ∈ V)
3937, 38syl 17 . . . . . . . 8 (𝜑 → suc 𝐴 ∈ V)
40 elong 6403 . . . . . . . 8 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
4139, 40syl 17 . . . . . . 7 (𝜑 → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
4236, 41mpbird 257 . . . . . 6 (𝜑 → suc 𝐴 ∈ On)
43 onsucuni 7864 . . . . . . 7 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
4415, 43syl 17 . . . . . 6 (𝜑𝐴 ⊆ suc 𝐴)
45 sseq2 4035 . . . . . . 7 (𝑧 = suc 𝐴 → (𝐴𝑧𝐴 ⊆ suc 𝐴))
4645rspcev 3635 . . . . . 6 ((suc 𝐴 ∈ On ∧ 𝐴 ⊆ suc 𝐴) → ∃𝑧 ∈ On 𝐴𝑧)
4742, 44, 46syl2anc 583 . . . . 5 (𝜑 → ∃𝑧 ∈ On 𝐴𝑧)
48 onintrab2 7833 . . . . 5 (∃𝑧 ∈ On 𝐴𝑧 {𝑧 ∈ On ∣ 𝐴𝑧} ∈ On)
4947, 48sylib 218 . . . 4 (𝜑 {𝑧 ∈ On ∣ 𝐴𝑧} ∈ On)
50 cofon1.3 . . . 4 (𝜑𝐵 {𝑧 ∈ On ∣ 𝐴𝑧})
5132, 49, 50elrabd 3710 . . 3 (𝜑 {𝑧 ∈ On ∣ 𝐴𝑧} ∈ {𝑤 ∈ On ∣ 𝐵𝑤})
52 intss1 4987 . . 3 ( {𝑧 ∈ On ∣ 𝐴𝑧} ∈ {𝑤 ∈ On ∣ 𝐵𝑤} → {𝑤 ∈ On ∣ 𝐵𝑤} ⊆ {𝑧 ∈ On ∣ 𝐴𝑧})
5351, 52syl 17 . 2 (𝜑 {𝑤 ∈ On ∣ 𝐵𝑤} ⊆ {𝑧 ∈ On ∣ 𝐴𝑧})
5431, 53eqssd 4026 1 (𝜑 {𝑧 ∈ On ∣ 𝐴𝑧} = {𝑤 ∈ On ∣ 𝐵𝑤})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931   cint 4970  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  cofon2  8729
  Copyright terms: Public domain W3C validator