| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7794. Forward implication of onsucb 7772. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucexg 7761 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 2 | sucexeloni 7765 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 Oncon0 6320 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 |
| This theorem is referenced by: ordsucOLD 7769 unon 7786 onsuci 7794 ordunisuc2 7800 ordzsl 7801 onzsl 7802 tfindsg 7817 dfom2 7824 findsg 7853 tfrlem12 8334 oasuc 8465 omsuc 8467 onasuc 8469 oacl 8476 oneo 8522 omeulem1 8523 omeulem2 8524 oeordi 8528 oeworde 8534 oelim2 8536 oelimcl 8541 oeeulem 8542 oeeui 8543 oaabs2 8590 naddsuc2 8642 omxpenlem 9019 card2inf 9484 cantnflt 9601 cantnflem1d 9617 cnfcom 9629 r1ordg 9707 bndrank 9770 r1pw 9774 r1pwALT 9775 tcrank 9813 onssnum 9969 dfac12lem2 10074 cfsuc 10186 cfsmolem 10199 fin1a2lem1 10329 fin1a2lem2 10330 ttukeylem7 10444 alephreg 10511 gch2 10604 winainflem 10622 winalim2 10625 r1wunlim 10666 nqereu 10858 noextend 27554 noresle 27585 nosupno 27591 madeoldsuc 27772 bdayn0p1 28234 constrextdg2lem 33711 ontgval 36392 ontgsucval 36393 onsuctop 36394 sucneqond 37326 onexgt 43202 onexomgt 43203 onexoegt 43206 onepsuc 43214 onsucelab 43225 ordnexbtwnsuc 43229 onsucrn 43233 cantnftermord 43282 cantnfub2 43284 omabs2 43294 onsucunipr 43334 onsucunitp 43335 nadd1suc 43354 naddwordnexlem0 43358 naddwordnexlem1 43359 minregex 43496 onsetreclem2 49668 |
| Copyright terms: Public domain | W3C validator |