| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7772. Forward implication of onsucb 7750. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucexg 7741 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 2 | sucexeloni 7745 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 Oncon0 6307 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-suc 6313 |
| This theorem is referenced by: unon 7764 onsuci 7772 ordunisuc2 7777 ordzsl 7778 onzsl 7779 tfindsg 7794 dfom2 7801 findsg 7830 tfrlem12 8311 oasuc 8442 omsuc 8444 onasuc 8446 oacl 8453 oneo 8499 omeulem1 8500 omeulem2 8501 oeordi 8505 oeworde 8511 oelim2 8513 oelimcl 8518 oeeulem 8519 oeeui 8520 oaabs2 8567 naddsuc2 8619 omxpenlem 8995 card2inf 9447 cantnflt 9568 cantnflem1d 9584 cnfcom 9596 r1ordg 9674 bndrank 9737 r1pw 9741 r1pwALT 9742 tcrank 9780 onssnum 9934 dfac12lem2 10039 cfsuc 10151 cfsmolem 10164 fin1a2lem1 10294 fin1a2lem2 10295 ttukeylem7 10409 alephreg 10476 gch2 10569 winainflem 10587 winalim2 10590 r1wunlim 10631 nqereu 10823 noextend 27576 noresle 27607 nosupno 27613 madeoldsuc 27799 bdayn0p1 28263 constrextdg2lem 33715 ontgval 36405 ontgsucval 36406 onsuctop 36407 sucneqond 37339 onexgt 43213 onexomgt 43214 onexoegt 43217 onepsuc 43225 onsucelab 43236 ordnexbtwnsuc 43240 onsucrn 43244 cantnftermord 43293 cantnfub2 43295 omabs2 43305 onsucunipr 43345 onsucunitp 43346 nadd1suc 43365 naddwordnexlem0 43369 naddwordnexlem1 43370 minregex 43507 onsetreclem2 49691 |
| Copyright terms: Public domain | W3C validator |