| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7817. Forward implication of onsucb 7795. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucexg 7784 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 2 | sucexeloni 7788 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 Oncon0 6335 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: ordsucOLD 7792 unon 7809 onsuci 7817 ordunisuc2 7823 ordzsl 7824 onzsl 7825 tfindsg 7840 dfom2 7847 findsg 7876 tfrlem12 8360 oasuc 8491 omsuc 8493 onasuc 8495 oacl 8502 oneo 8548 omeulem1 8549 omeulem2 8550 oeordi 8554 oeworde 8560 oelim2 8562 oelimcl 8567 oeeulem 8568 oeeui 8569 oaabs2 8616 naddsuc2 8668 omxpenlem 9047 card2inf 9515 cantnflt 9632 cantnflem1d 9648 cnfcom 9660 r1ordg 9738 bndrank 9801 r1pw 9805 r1pwALT 9806 tcrank 9844 onssnum 10000 dfac12lem2 10105 cfsuc 10217 cfsmolem 10230 fin1a2lem1 10360 fin1a2lem2 10361 ttukeylem7 10475 alephreg 10542 gch2 10635 winainflem 10653 winalim2 10656 r1wunlim 10697 nqereu 10889 noextend 27585 noresle 27616 nosupno 27622 madeoldsuc 27803 bdayn0p1 28265 constrextdg2lem 33745 ontgval 36426 ontgsucval 36427 onsuctop 36428 sucneqond 37360 onexgt 43236 onexomgt 43237 onexoegt 43240 onepsuc 43248 onsucelab 43259 ordnexbtwnsuc 43263 onsucrn 43267 cantnftermord 43316 cantnfub2 43318 omabs2 43328 onsucunipr 43368 onsucunitp 43369 nadd1suc 43388 naddwordnexlem0 43392 naddwordnexlem1 43393 minregex 43530 onsetreclem2 49699 |
| Copyright terms: Public domain | W3C validator |