![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7875. Forward implication of onsucb 7853. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucexg 7841 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
2 | sucexeloni 7845 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
3 | 1, 2 | mpdan 686 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: ordsucOLD 7850 unon 7867 onsuci 7875 ordunisuc2 7881 ordzsl 7882 onzsl 7883 tfindsg 7898 dfom2 7905 findsg 7937 tfrlem12 8445 oasuc 8580 omsuc 8582 onasuc 8584 oacl 8591 oneo 8637 omeulem1 8638 omeulem2 8639 oeordi 8643 oeworde 8649 oelim2 8651 oelimcl 8656 oeeulem 8657 oeeui 8658 oaabs2 8705 naddsuc2 8757 omxpenlem 9139 card2inf 9624 cantnflt 9741 cantnflem1d 9757 cnfcom 9769 r1ordg 9847 bndrank 9910 r1pw 9914 r1pwALT 9915 tcrank 9953 onssnum 10109 dfac12lem2 10214 cfsuc 10326 cfsmolem 10339 fin1a2lem1 10469 fin1a2lem2 10470 ttukeylem7 10584 alephreg 10651 gch2 10744 winainflem 10762 winalim2 10765 r1wunlim 10806 nqereu 10998 noextend 27729 noresle 27760 nosupno 27766 madeoldsuc 27941 ontgval 36397 ontgsucval 36398 onsuctop 36399 sucneqond 37331 onexgt 43201 onexomgt 43202 onexoegt 43205 onepsuc 43213 onsucelab 43225 ordnexbtwnsuc 43229 onsucrn 43233 cantnftermord 43282 cantnfub2 43284 omabs2 43294 onsucunipr 43334 onsucunitp 43335 nadd1suc 43354 naddwordnexlem0 43358 naddwordnexlem1 43359 minregex 43496 onsetreclem2 48798 |
Copyright terms: Public domain | W3C validator |