![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7831. Forward implication of onsucb 7809. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucexg 7797 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
2 | sucexeloni 7801 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
3 | 1, 2 | mpdan 684 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3473 Oncon0 6364 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: ordsucOLD 7806 unon 7823 onsuci 7831 ordunisuc2 7837 ordzsl 7838 onzsl 7839 tfindsg 7854 dfom2 7861 findsg 7894 tfrlem12 8395 oasuc 8530 omsuc 8532 onasuc 8534 oacl 8541 oneo 8587 omeulem1 8588 omeulem2 8589 oeordi 8593 oeworde 8599 oelim2 8601 oelimcl 8606 oeeulem 8607 oeeui 8608 oaabs2 8654 omxpenlem 9079 card2inf 9556 cantnflt 9673 cantnflem1d 9689 cnfcom 9701 r1ordg 9779 bndrank 9842 r1pw 9846 r1pwALT 9847 tcrank 9885 onssnum 10041 dfac12lem2 10145 cfsuc 10258 cfsmolem 10271 fin1a2lem1 10401 fin1a2lem2 10402 ttukeylem7 10516 alephreg 10583 gch2 10676 winainflem 10694 winalim2 10697 r1wunlim 10738 nqereu 10930 noextend 27512 noresle 27543 nosupno 27549 madeoldsuc 27724 ontgval 35780 ontgsucval 35781 onsuctop 35782 sucneqond 36710 onexgt 42452 onexomgt 42453 onexoegt 42456 onepsuc 42464 onsucelab 42476 ordnexbtwnsuc 42480 onsucrn 42484 cantnftermord 42533 cantnfub2 42535 omabs2 42545 onsucunipr 42585 onsucunitp 42586 nadd1suc 42605 naddsuc2 42606 naddwordnexlem0 42610 naddwordnexlem1 42611 minregex 42748 onsetreclem2 47913 |
Copyright terms: Public domain | W3C validator |