| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7838. Forward implication of onsucb 7816. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucexg 7804 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 2 | sucexeloni 7808 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: ordsucOLD 7813 unon 7830 onsuci 7838 ordunisuc2 7844 ordzsl 7845 onzsl 7846 tfindsg 7861 dfom2 7868 findsg 7898 tfrlem12 8408 oasuc 8541 omsuc 8543 onasuc 8545 oacl 8552 oneo 8598 omeulem1 8599 omeulem2 8600 oeordi 8604 oeworde 8610 oelim2 8612 oelimcl 8617 oeeulem 8618 oeeui 8619 oaabs2 8666 naddsuc2 8718 omxpenlem 9092 card2inf 9574 cantnflt 9691 cantnflem1d 9707 cnfcom 9719 r1ordg 9797 bndrank 9860 r1pw 9864 r1pwALT 9865 tcrank 9903 onssnum 10059 dfac12lem2 10164 cfsuc 10276 cfsmolem 10289 fin1a2lem1 10419 fin1a2lem2 10420 ttukeylem7 10534 alephreg 10601 gch2 10694 winainflem 10712 winalim2 10715 r1wunlim 10756 nqereu 10948 noextend 27635 noresle 27666 nosupno 27672 madeoldsuc 27853 bdayn0p1 28315 constrextdg2lem 33787 ontgval 36454 ontgsucval 36455 onsuctop 36456 sucneqond 37388 onexgt 43231 onexomgt 43232 onexoegt 43235 onepsuc 43243 onsucelab 43254 ordnexbtwnsuc 43258 onsucrn 43262 cantnftermord 43311 cantnfub2 43313 omabs2 43323 onsucunipr 43363 onsucunitp 43364 nadd1suc 43383 naddwordnexlem0 43387 naddwordnexlem1 43388 minregex 43525 onsetreclem2 49537 |
| Copyright terms: Public domain | W3C validator |