| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7769. Forward implication of onsucb 7747. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucexg 7738 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 2 | sucexeloni 7742 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: unon 7761 onsuci 7769 ordunisuc2 7774 ordzsl 7775 onzsl 7776 tfindsg 7791 dfom2 7798 findsg 7827 tfrlem12 8308 oasuc 8439 omsuc 8441 onasuc 8443 oacl 8450 oneo 8496 omeulem1 8497 omeulem2 8498 oeordi 8502 oeworde 8508 oelim2 8510 oelimcl 8515 oeeulem 8516 oeeui 8517 oaabs2 8564 naddsuc2 8616 omxpenlem 8991 card2inf 9441 cantnflt 9562 cantnflem1d 9578 cnfcom 9590 r1ordg 9671 bndrank 9734 r1pw 9738 r1pwALT 9739 tcrank 9777 onssnum 9931 dfac12lem2 10036 cfsuc 10148 cfsmolem 10161 fin1a2lem1 10291 fin1a2lem2 10292 ttukeylem7 10406 alephreg 10473 gch2 10566 winainflem 10584 winalim2 10587 r1wunlim 10628 nqereu 10820 noextend 27605 noresle 27636 nosupno 27642 madeoldsuc 27830 bdayn0p1 28294 constrextdg2lem 33761 fineqvnttrclselem2 35142 ontgval 36473 ontgsucval 36474 onsuctop 36475 sucneqond 37407 onexgt 43281 onexomgt 43282 onexoegt 43285 onepsuc 43293 onsucelab 43304 ordnexbtwnsuc 43308 onsucrn 43312 cantnftermord 43361 cantnfub2 43363 omabs2 43373 onsucunipr 43413 onsucunitp 43414 nadd1suc 43433 naddwordnexlem0 43437 naddwordnexlem1 43438 minregex 43575 onsetreclem2 49746 |
| Copyright terms: Public domain | W3C validator |