![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7859. Forward implication of onsucb 7837. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucexg 7825 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
2 | sucexeloni 7829 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 Oncon0 6386 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: ordsucOLD 7834 unon 7851 onsuci 7859 ordunisuc2 7865 ordzsl 7866 onzsl 7867 tfindsg 7882 dfom2 7889 findsg 7920 tfrlem12 8428 oasuc 8561 omsuc 8563 onasuc 8565 oacl 8572 oneo 8618 omeulem1 8619 omeulem2 8620 oeordi 8624 oeworde 8630 oelim2 8632 oelimcl 8637 oeeulem 8638 oeeui 8639 oaabs2 8686 naddsuc2 8738 omxpenlem 9112 card2inf 9593 cantnflt 9710 cantnflem1d 9726 cnfcom 9738 r1ordg 9816 bndrank 9879 r1pw 9883 r1pwALT 9884 tcrank 9922 onssnum 10078 dfac12lem2 10183 cfsuc 10295 cfsmolem 10308 fin1a2lem1 10438 fin1a2lem2 10439 ttukeylem7 10553 alephreg 10620 gch2 10713 winainflem 10731 winalim2 10734 r1wunlim 10775 nqereu 10967 noextend 27726 noresle 27757 nosupno 27763 madeoldsuc 27938 ontgval 36414 ontgsucval 36415 onsuctop 36416 sucneqond 37348 onexgt 43229 onexomgt 43230 onexoegt 43233 onepsuc 43241 onsucelab 43253 ordnexbtwnsuc 43257 onsucrn 43261 cantnftermord 43310 cantnfub2 43312 omabs2 43322 onsucunipr 43362 onsucunitp 43363 nadd1suc 43382 naddwordnexlem0 43386 naddwordnexlem1 43387 minregex 43524 onsetreclem2 48937 |
Copyright terms: Public domain | W3C validator |