| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 7814. Forward implication of onsucb 7792. Proposition 7.24 of [TakeutiZaring] p. 41. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| onsuc | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucexg 7781 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
| 2 | sucexeloni 7785 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ V) → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 Oncon0 6332 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 |
| This theorem is referenced by: ordsucOLD 7789 unon 7806 onsuci 7814 ordunisuc2 7820 ordzsl 7821 onzsl 7822 tfindsg 7837 dfom2 7844 findsg 7873 tfrlem12 8357 oasuc 8488 omsuc 8490 onasuc 8492 oacl 8499 oneo 8545 omeulem1 8546 omeulem2 8547 oeordi 8551 oeworde 8557 oelim2 8559 oelimcl 8564 oeeulem 8565 oeeui 8566 oaabs2 8613 naddsuc2 8665 omxpenlem 9042 card2inf 9508 cantnflt 9625 cantnflem1d 9641 cnfcom 9653 r1ordg 9731 bndrank 9794 r1pw 9798 r1pwALT 9799 tcrank 9837 onssnum 9993 dfac12lem2 10098 cfsuc 10210 cfsmolem 10223 fin1a2lem1 10353 fin1a2lem2 10354 ttukeylem7 10468 alephreg 10535 gch2 10628 winainflem 10646 winalim2 10649 r1wunlim 10690 nqereu 10882 noextend 27578 noresle 27609 nosupno 27615 madeoldsuc 27796 bdayn0p1 28258 constrextdg2lem 33738 ontgval 36419 ontgsucval 36420 onsuctop 36421 sucneqond 37353 onexgt 43229 onexomgt 43230 onexoegt 43233 onepsuc 43241 onsucelab 43252 ordnexbtwnsuc 43256 onsucrn 43260 cantnftermord 43309 cantnfub2 43311 omabs2 43321 onsucunipr 43361 onsucunitp 43362 nadd1suc 43381 naddwordnexlem0 43385 naddwordnexlem1 43386 minregex 43523 onsetreclem2 49695 |
| Copyright terms: Public domain | W3C validator |