![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsuci | Structured version Visualization version GIF version |
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7795. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
Ref | Expression |
---|---|
ordsuci | ⊢ (Ord 𝐴 → Ord suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6371 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | suctr 6443 | . . 3 ⊢ (Tr 𝐴 → Tr suc 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (Ord 𝐴 → Tr suc 𝐴) |
4 | df-suc 6363 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | ordsson 7766 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
6 | elon2 6368 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
7 | snssi 4806 | . . . . . 6 ⊢ (𝐴 ∈ On → {𝐴} ⊆ On) | |
8 | 6, 7 | sylbir 234 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → {𝐴} ⊆ On) |
9 | snprc 4716 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
10 | 9 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
11 | 0ss 4391 | . . . . . . 7 ⊢ ∅ ⊆ On | |
12 | 10, 11 | eqsstrdi 4031 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} ⊆ On) |
13 | 12 | adantl 481 | . . . . 5 ⊢ ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On) |
14 | 8, 13 | pm2.61dan 810 | . . . 4 ⊢ (Ord 𝐴 → {𝐴} ⊆ On) |
15 | 5, 14 | unssd 4181 | . . 3 ⊢ (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On) |
16 | 4, 15 | eqsstrid 4025 | . 2 ⊢ (Ord 𝐴 → suc 𝐴 ⊆ On) |
17 | ordon 7760 | . . 3 ⊢ Ord On | |
18 | 17 | a1i 11 | . 2 ⊢ (Ord 𝐴 → Ord On) |
19 | trssord 6374 | . 2 ⊢ ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴) | |
20 | 3, 16, 18, 19 | syl3anc 1368 | 1 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∪ cun 3941 ⊆ wss 3943 ∅c0 4317 {csn 4623 Tr wtr 5258 Ord word 6356 Oncon0 6357 suc csuc 6359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6360 df-on 6361 df-suc 6363 |
This theorem is referenced by: sucexeloni 7793 ordsuc 7797 ord3 8481 ordeldifsucon 42567 ordeldif1o 42568 ordnexbtwnsuc 42575 ordsssucb 42643 onsucunifi 42678 |
Copyright terms: Public domain | W3C validator |