MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsuci Structured version   Visualization version   GIF version

Theorem ordsuci 7792
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7795. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
ordsuci (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsuci
StepHypRef Expression
1 ordtr 6371 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 6443 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 17 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 6363 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
5 ordsson 7766 . . . 4 (Ord 𝐴𝐴 ⊆ On)
6 elon2 6368 . . . . . 6 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
7 snssi 4806 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
86, 7sylbir 234 . . . . 5 ((Ord 𝐴𝐴 ∈ V) → {𝐴} ⊆ On)
9 snprc 4716 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 215 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
11 0ss 4391 . . . . . . 7 ∅ ⊆ On
1210, 11eqsstrdi 4031 . . . . . 6 𝐴 ∈ V → {𝐴} ⊆ On)
1312adantl 481 . . . . 5 ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On)
148, 13pm2.61dan 810 . . . 4 (Ord 𝐴 → {𝐴} ⊆ On)
155, 14unssd 4181 . . 3 (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On)
164, 15eqsstrid 4025 . 2 (Ord 𝐴 → suc 𝐴 ⊆ On)
17 ordon 7760 . . 3 Ord On
1817a1i 11 . 2 (Ord 𝐴 → Ord On)
19 trssord 6374 . 2 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
203, 16, 18, 19syl3anc 1368 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cun 3941  wss 3943  c0 4317  {csn 4623  Tr wtr 5258  Ord word 6356  Oncon0 6357  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by:  sucexeloni  7793  ordsuc  7797  ord3  8481  ordeldifsucon  42567  ordeldif1o  42568  ordnexbtwnsuc  42575  ordsssucb  42643  onsucunifi  42678
  Copyright terms: Public domain W3C validator