MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsuci Structured version   Visualization version   GIF version

Theorem ordsuci 7787
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7790. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
ordsuci (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsuci
StepHypRef Expression
1 ordtr 6349 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 6423 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 17 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 6341 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
5 ordsson 7762 . . . 4 (Ord 𝐴𝐴 ⊆ On)
6 elon2 6346 . . . . . 6 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
7 snssi 4775 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
86, 7sylbir 235 . . . . 5 ((Ord 𝐴𝐴 ∈ V) → {𝐴} ⊆ On)
9 snprc 4684 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
11 0ss 4366 . . . . . . 7 ∅ ⊆ On
1210, 11eqsstrdi 3994 . . . . . 6 𝐴 ∈ V → {𝐴} ⊆ On)
1312adantl 481 . . . . 5 ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On)
148, 13pm2.61dan 812 . . . 4 (Ord 𝐴 → {𝐴} ⊆ On)
155, 14unssd 4158 . . 3 (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On)
164, 15eqsstrid 3988 . 2 (Ord 𝐴 → suc 𝐴 ⊆ On)
17 ordon 7756 . . 3 Ord On
1817a1i 11 . 2 (Ord 𝐴 → Ord On)
19 trssord 6352 . 2 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
203, 16, 18, 19syl3anc 1373 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917  c0 4299  {csn 4592  Tr wtr 5217  Ord word 6334  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by:  sucexeloni  7788  ordsuc  7791  ord3  8452  ordeldifsucon  43255  ordeldif1o  43256  ordnexbtwnsuc  43263  ordsssucb  43331  onsucunifi  43366
  Copyright terms: Public domain W3C validator