MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsuci Structured version   Visualization version   GIF version

Theorem ordsuci 7741
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7743. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
ordsuci (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsuci
StepHypRef Expression
1 ordtr 6320 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 6394 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 17 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 6312 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
5 ordsson 7716 . . . 4 (Ord 𝐴𝐴 ⊆ On)
6 elon2 6317 . . . . . 6 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
7 snssi 4760 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
86, 7sylbir 235 . . . . 5 ((Ord 𝐴𝐴 ∈ V) → {𝐴} ⊆ On)
9 snprc 4670 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
11 0ss 4350 . . . . . . 7 ∅ ⊆ On
1210, 11eqsstrdi 3979 . . . . . 6 𝐴 ∈ V → {𝐴} ⊆ On)
1312adantl 481 . . . . 5 ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On)
148, 13pm2.61dan 812 . . . 4 (Ord 𝐴 → {𝐴} ⊆ On)
155, 14unssd 4142 . . 3 (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On)
164, 15eqsstrid 3973 . 2 (Ord 𝐴 → suc 𝐴 ⊆ On)
17 ordon 7710 . . 3 Ord On
1817a1i 11 . 2 (Ord 𝐴 → Ord On)
19 trssord 6323 . 2 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
203, 16, 18, 19syl3anc 1373 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  wss 3902  c0 4283  {csn 4576  Tr wtr 5198  Ord word 6305  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by:  sucexeloni  7742  ordsuc  7744  ord3  8400  ordeldifsucon  43298  ordeldif1o  43299  ordnexbtwnsuc  43306  ordsssucb  43374  onsucunifi  43409
  Copyright terms: Public domain W3C validator