MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsuci Structured version   Visualization version   GIF version

Theorem ordsuci 7747
Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7749. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.)
Assertion
Ref Expression
ordsuci (Ord 𝐴 → Ord suc 𝐴)

Proof of Theorem ordsuci
StepHypRef Expression
1 ordtr 6325 . . 3 (Ord 𝐴 → Tr 𝐴)
2 suctr 6399 . . 3 (Tr 𝐴 → Tr suc 𝐴)
31, 2syl 17 . 2 (Ord 𝐴 → Tr suc 𝐴)
4 df-suc 6317 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
5 ordsson 7722 . . . 4 (Ord 𝐴𝐴 ⊆ On)
6 elon2 6322 . . . . . 6 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
7 snssi 4759 . . . . . 6 (𝐴 ∈ On → {𝐴} ⊆ On)
86, 7sylbir 235 . . . . 5 ((Ord 𝐴𝐴 ∈ V) → {𝐴} ⊆ On)
9 snprc 4669 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
11 0ss 4349 . . . . . . 7 ∅ ⊆ On
1210, 11eqsstrdi 3975 . . . . . 6 𝐴 ∈ V → {𝐴} ⊆ On)
1312adantl 481 . . . . 5 ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On)
148, 13pm2.61dan 812 . . . 4 (Ord 𝐴 → {𝐴} ⊆ On)
155, 14unssd 4141 . . 3 (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On)
164, 15eqsstrid 3969 . 2 (Ord 𝐴 → suc 𝐴 ⊆ On)
17 ordon 7716 . . 3 Ord On
1817a1i 11 . 2 (Ord 𝐴 → Ord On)
19 trssord 6328 . 2 ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴)
203, 16, 18, 19syl3anc 1373 1 (Ord 𝐴 → Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  wss 3898  c0 4282  {csn 4575  Tr wtr 5200  Ord word 6310  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by:  sucexeloni  7748  ordsuc  7750  ord3  8406  ordeldifsucon  43377  ordeldif1o  43378  ordnexbtwnsuc  43385  ordsssucb  43453  onsucunifi  43488
  Copyright terms: Public domain W3C validator