| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsuci | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7810. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordsuci | ⊢ (Ord 𝐴 → Ord suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6371 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | suctr 6445 | . . 3 ⊢ (Tr 𝐴 → Tr suc 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (Ord 𝐴 → Tr suc 𝐴) |
| 4 | df-suc 6363 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | ordsson 7782 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 6 | elon2 6368 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
| 7 | snssi 4789 | . . . . . 6 ⊢ (𝐴 ∈ On → {𝐴} ⊆ On) | |
| 8 | 6, 7 | sylbir 235 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → {𝐴} ⊆ On) |
| 9 | snprc 4698 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 10 | 9 | biimpi 216 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 11 | 0ss 4380 | . . . . . . 7 ⊢ ∅ ⊆ On | |
| 12 | 10, 11 | eqsstrdi 4008 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} ⊆ On) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On) |
| 14 | 8, 13 | pm2.61dan 812 | . . . 4 ⊢ (Ord 𝐴 → {𝐴} ⊆ On) |
| 15 | 5, 14 | unssd 4172 | . . 3 ⊢ (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On) |
| 16 | 4, 15 | eqsstrid 4002 | . 2 ⊢ (Ord 𝐴 → suc 𝐴 ⊆ On) |
| 17 | ordon 7776 | . . 3 ⊢ Ord On | |
| 18 | 17 | a1i 11 | . 2 ⊢ (Ord 𝐴 → Ord On) |
| 19 | trssord 6374 | . 2 ⊢ ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴) | |
| 20 | 3, 16, 18, 19 | syl3anc 1373 | 1 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 Tr wtr 5234 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: sucexeloni 7808 ordsuc 7812 ord3 8502 ordeldifsucon 43250 ordeldif1o 43251 ordnexbtwnsuc 43258 ordsssucb 43326 onsucunifi 43361 |
| Copyright terms: Public domain | W3C validator |