| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsuci | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of [Schloeder] p. 1. (Contributed by NM, 6-Jun-1994.) Extract and adapt from a subproof of onsuc 7743. (Revised by BTernaryTau, 6-Jan-2025.) (Proof shortened by BJ, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordsuci | ⊢ (Ord 𝐴 → Ord suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6320 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | suctr 6394 | . . 3 ⊢ (Tr 𝐴 → Tr suc 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (Ord 𝐴 → Tr suc 𝐴) |
| 4 | df-suc 6312 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | ordsson 7716 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 6 | elon2 6317 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
| 7 | snssi 4760 | . . . . . 6 ⊢ (𝐴 ∈ On → {𝐴} ⊆ On) | |
| 8 | 6, 7 | sylbir 235 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) → {𝐴} ⊆ On) |
| 9 | snprc 4670 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 10 | 9 | biimpi 216 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 11 | 0ss 4350 | . . . . . . 7 ⊢ ∅ ⊆ On | |
| 12 | 10, 11 | eqsstrdi 3979 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} ⊆ On) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((Ord 𝐴 ∧ ¬ 𝐴 ∈ V) → {𝐴} ⊆ On) |
| 14 | 8, 13 | pm2.61dan 812 | . . . 4 ⊢ (Ord 𝐴 → {𝐴} ⊆ On) |
| 15 | 5, 14 | unssd 4142 | . . 3 ⊢ (Ord 𝐴 → (𝐴 ∪ {𝐴}) ⊆ On) |
| 16 | 4, 15 | eqsstrid 3973 | . 2 ⊢ (Ord 𝐴 → suc 𝐴 ⊆ On) |
| 17 | ordon 7710 | . . 3 ⊢ Ord On | |
| 18 | 17 | a1i 11 | . 2 ⊢ (Ord 𝐴 → Ord On) |
| 19 | trssord 6323 | . 2 ⊢ ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴) | |
| 20 | 3, 16, 18, 19 | syl3anc 1373 | 1 ⊢ (Ord 𝐴 → Ord suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ⊆ wss 3902 ∅c0 4283 {csn 4576 Tr wtr 5198 Ord word 6305 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: sucexeloni 7742 ordsuc 7744 ord3 8400 ordeldifsucon 43298 ordeldif1o 43299 ordnexbtwnsuc 43306 ordsssucb 43374 onsucunifi 43409 |
| Copyright terms: Public domain | W3C validator |