MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  svrelfun Structured version   Visualization version   GIF version

Theorem svrelfun 6613
Description: A single-valued relation is a function. (See fun2cnv 6612 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
svrelfun (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))

Proof of Theorem svrelfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 6549 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 fun2cnv 6612 . . 3 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
32anbi2i 623 . 2 ((Rel 𝐴 ∧ Fun 𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
41, 3bitr4i 278 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538  ∃*wmo 2538   class class class wbr 5124  ccnv 5658  Rel wrel 5664  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-fun 6538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator