![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > svrelfun | Structured version Visualization version GIF version |
Description: A single-valued relation is a function. (See fun2cnv 6255 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
svrelfun | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 6200 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
2 | fun2cnv 6255 | . . 3 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) | |
3 | 2 | anbi2i 614 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡◡𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
4 | 1, 3 | bitr4i 270 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∀wal 1506 ∃*wmo 2546 class class class wbr 4925 ◡ccnv 5402 Rel wrel 5408 Fun wfun 6179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-fun 6187 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |