MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  svrelfun Structured version   Visualization version   GIF version

Theorem svrelfun 6256
Description: A single-valued relation is a function. (See fun2cnv 6255 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
svrelfun (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))

Proof of Theorem svrelfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 6200 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 fun2cnv 6255 . . 3 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
32anbi2i 614 . 2 ((Rel 𝐴 ∧ Fun 𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
41, 3bitr4i 270 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  wal 1506  ∃*wmo 2546   class class class wbr 4925  ccnv 5402  Rel wrel 5408  Fun wfun 6179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926  df-opab 4988  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-fun 6187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator