| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > svrelfun | Structured version Visualization version GIF version | ||
| Description: A single-valued relation is a function. (See fun2cnv 6552 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.) |
| Ref | Expression |
|---|---|
| svrelfun | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6492 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | fun2cnv 6552 | . . 3 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ Fun ◡◡𝐴) ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃*wmo 2533 class class class wbr 5089 ◡ccnv 5613 Rel wrel 5619 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |