MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2cnv Structured version   Visualization version   GIF version

Theorem fun2cnv 6627
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
fun2cnv (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fun2cnv
StepHypRef Expression
1 funcnv2 6624 . 2 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑦𝐴𝑥)
2 vex 3475 . . . . 5 𝑦 ∈ V
3 vex 3475 . . . . 5 𝑥 ∈ V
42, 3brcnv 5887 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
54mobii 2537 . . 3 (∃*𝑦 𝑦𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦)
65albii 1813 . 2 (∀𝑥∃*𝑦 𝑦𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
71, 6bitri 274 1 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1531  ∃*wmo 2527   class class class wbr 5150  ccnv 5679  Fun wfun 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2529  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-fun 6553
This theorem is referenced by:  svrelfun  6628  fun11  6630
  Copyright terms: Public domain W3C validator