![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2cnv | Structured version Visualization version GIF version |
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
fun2cnv | ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnv2 6646 | . 2 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑦◡𝐴𝑥) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brcnv 5907 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
5 | 4 | mobii 2551 | . . 3 ⊢ (∃*𝑦 𝑦◡𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦) |
6 | 5 | albii 1817 | . 2 ⊢ (∀𝑥∃*𝑦 𝑦◡𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
7 | 1, 6 | bitri 275 | 1 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 ∃*wmo 2541 class class class wbr 5166 ◡ccnv 5699 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: svrelfun 6650 fun11 6652 |
Copyright terms: Public domain | W3C validator |