MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2cnv Structured version   Visualization version   GIF version

Theorem fun2cnv 6587
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
fun2cnv (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fun2cnv
StepHypRef Expression
1 funcnv2 6584 . 2 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑦𝐴𝑥)
2 vex 3451 . . . . 5 𝑦 ∈ V
3 vex 3451 . . . . 5 𝑥 ∈ V
42, 3brcnv 5846 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
54mobii 2541 . . 3 (∃*𝑦 𝑦𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦)
65albii 1819 . 2 (∀𝑥∃*𝑦 𝑦𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
71, 6bitri 275 1 (Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  ∃*wmo 2531   class class class wbr 5107  ccnv 5637  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by:  svrelfun  6588  fun11  6590
  Copyright terms: Public domain W3C validator