| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun2cnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| fun2cnv | ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnv2 6550 | . 2 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑦◡𝐴𝑥) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | brcnv 5825 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 5 | 4 | mobii 2541 | . . 3 ⊢ (∃*𝑦 𝑦◡𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥∃*𝑦 𝑦◡𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃*wmo 2531 class class class wbr 5092 ◡ccnv 5618 Fun wfun 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6484 |
| This theorem is referenced by: svrelfun 6554 fun11 6556 |
| Copyright terms: Public domain | W3C validator |