![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2cnv | Structured version Visualization version GIF version |
Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
fun2cnv | ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnv2 6617 | . 2 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑦◡𝐴𝑥) | |
2 | vex 3479 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brcnv 5883 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
5 | 4 | mobii 2543 | . . 3 ⊢ (∃*𝑦 𝑦◡𝐴𝑥 ↔ ∃*𝑦 𝑥𝐴𝑦) |
6 | 5 | albii 1822 | . 2 ⊢ (∀𝑥∃*𝑦 𝑦◡𝐴𝑥 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
7 | 1, 6 | bitri 275 | 1 ⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 ∃*wmo 2533 class class class wbr 5149 ◡ccnv 5676 Fun wfun 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-fun 6546 |
This theorem is referenced by: svrelfun 6621 fun11 6623 |
Copyright terms: Public domain | W3C validator |