Step | Hyp | Ref
| Expression |
1 | | mdetuni.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | mdetuni.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
3 | | mdetuni.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
4 | | mdetuni.0g |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
5 | | mdetuni.1r |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
6 | | mdetuni.pg |
. . . . 5
⊢ + =
(+g‘𝑅) |
7 | | mdetuni.tg |
. . . . 5
⊢ · =
(.r‘𝑅) |
8 | | mdetuni.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ Fin) |
9 | | mdetuni.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | | ringgrp 19788 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Grp) |
13 | | mdetuni.ff |
. . . . . . . 8
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
14 | 13 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐷‘𝑎) ∈ 𝐾) |
15 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
16 | 8, 9 | jca 512 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
17 | 1 | matring 21592 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(1r‘𝐴) = (1r‘𝐴) |
19 | 2, 18 | ringidcl 19807 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ 𝐵) |
20 | 16, 17, 19 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝐴) ∈ 𝐵) |
21 | 13, 20 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘(1r‘𝐴)) ∈ 𝐾) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐷‘(1r‘𝐴)) ∈ 𝐾) |
23 | | mdetuni.cr |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
24 | | mdetuni.e |
. . . . . . . . . . 11
⊢ 𝐸 = (𝑁 maDet 𝑅) |
25 | 24, 1, 2, 3 | mdetf 21744 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝐸:𝐵⟶𝐾) |
26 | 23, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸:𝐵⟶𝐾) |
27 | 26 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐸‘𝑎) ∈ 𝐾) |
28 | 3, 7 | ringcl 19800 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾 ∧ (𝐸‘𝑎) ∈ 𝐾) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) ∈ 𝐾) |
29 | 15, 22, 27, 28 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) ∈ 𝐾) |
30 | | eqid 2738 |
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) |
31 | 3, 30 | grpsubcl 18655 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ (𝐷‘𝑎) ∈ 𝐾 ∧ ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) ∈ 𝐾) → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) ∈ 𝐾) |
32 | 12, 14, 29, 31 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) ∈ 𝐾) |
33 | 32 | fmpttd 6989 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)))):𝐵⟶𝐾) |
34 | | simpr1 1193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → 𝑏 ∈ 𝐵) |
35 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝐷‘𝑎) = (𝐷‘𝑏)) |
36 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝐸‘𝑎) = (𝐸‘𝑏)) |
37 | 36 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏))) |
38 | 35, 37 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
39 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)))) = (𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)))) |
40 | | ovex 7308 |
. . . . . . . . . . 11
⊢ ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏))) ∈ V |
41 | 38, 39, 40 | fvmpt 6875 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
42 | 34, 41 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
43 | 42 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
44 | | simp1 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝜑) |
45 | | simp21 1205 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑏 ∈ 𝐵) |
46 | | simp3r 1201 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) |
47 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑤 → (𝑐𝑏𝑒) = (𝑐𝑏𝑤)) |
48 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑒 = 𝑤 → (𝑑𝑏𝑒) = (𝑑𝑏𝑤)) |
49 | 47, 48 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑤 → ((𝑐𝑏𝑒) = (𝑑𝑏𝑒) ↔ (𝑐𝑏𝑤) = (𝑑𝑏𝑤))) |
50 | 49 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒) ↔ ∀𝑤 ∈ 𝑁 (𝑐𝑏𝑤) = (𝑑𝑏𝑤)) |
51 | 46, 50 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ∀𝑤 ∈ 𝑁 (𝑐𝑏𝑤) = (𝑑𝑏𝑤)) |
52 | | simp22 1206 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑐 ∈ 𝑁) |
53 | | simp23 1207 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑑 ∈ 𝑁) |
54 | | simp3l 1200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑐 ≠ 𝑑) |
55 | | mdetuni.al |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
56 | | mdetuni.li |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
57 | | mdetuni.sc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
58 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13,
55, 56, 57 | mdetunilem1 21761 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝑐𝑏𝑤) = (𝑑𝑏𝑤)) ∧ (𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ≠ 𝑑)) → (𝐷‘𝑏) = 0 ) |
59 | 44, 45, 51, 52, 53, 54, 58 | syl33anc 1384 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → (𝐷‘𝑏) = 0 ) |
60 | 23 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑅 ∈ CRing) |
61 | 24, 1, 2, 4, 60, 45, 52, 53, 54, 46 | mdetralt 21757 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → (𝐸‘𝑏) = 0 ) |
62 | 61 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)) = ((𝐷‘(1r‘𝐴)) · 0 )) |
63 | 59, 62 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏))) = ( 0 (-g‘𝑅)((𝐷‘(1r‘𝐴)) · 0 ))) |
64 | 3, 7, 4 | ringrz 19827 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾) → ((𝐷‘(1r‘𝐴)) · 0 ) = 0 ) |
65 | 9, 21, 64 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · 0 ) = 0 ) |
66 | 65 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (-g‘𝑅)((𝐷‘(1r‘𝐴)) · 0 )) = ( 0 (-g‘𝑅) 0 )) |
67 | 3, 4 | grpidcl 18607 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Grp → 0 ∈ 𝐾) |
68 | 3, 4, 30 | grpsubid 18659 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐾) → ( 0 (-g‘𝑅) 0 ) = 0 ) |
69 | 11, 67, 68 | syl2anc2 585 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (-g‘𝑅) 0 ) = 0 ) |
70 | 66, 69 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ( 0 (-g‘𝑅)((𝐷‘(1r‘𝐴)) · 0 )) = 0 ) |
71 | 70 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ( 0 (-g‘𝑅)((𝐷‘(1r‘𝐴)) · 0 )) = 0 ) |
72 | 43, 63, 71 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁) ∧ (𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = 0 ) |
73 | 72 | 3expia 1120 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁)) → ((𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = 0 )) |
74 | 73 | ralrimivvva 3127 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝑁 ∀𝑑 ∈ 𝑁 ((𝑐 ≠ 𝑑 ∧ ∀𝑒 ∈ 𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = 0 )) |
75 | | simp1 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝜑) |
76 | | simp2ll 1239 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑏 ∈ 𝐵) |
77 | | simp2lr 1240 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑐 ∈ 𝐵) |
78 | | simp2rl 1241 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑑 ∈ 𝐵) |
79 | | simp2rr 1242 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑒 ∈ 𝑁) |
80 | | simp31 1208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁)))) |
81 | | simp32 1209 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
82 | | simp33 1210 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
83 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13,
55, 56, 57 | mdetunilem3 21763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁 ∧ (𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁)))) ∧ ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷‘𝑏) = ((𝐷‘𝑐) + (𝐷‘𝑑))) |
84 | 75, 76, 77, 78, 79, 80, 81, 82, 83 | syl332anc 1400 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷‘𝑏) = ((𝐷‘𝑐) + (𝐷‘𝑑))) |
85 | 23 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑅 ∈ CRing) |
86 | 24, 1, 2, 6, 85, 76, 77, 78, 79, 80, 81, 82 | mdetrlin 21751 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐸‘𝑏) = ((𝐸‘𝑐) + (𝐸‘𝑑))) |
87 | 86 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)) = ((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑)))) |
88 | 84, 87 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏))) = (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑))))) |
89 | | simprll 776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑏 ∈ 𝐵) |
90 | 89, 41 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
91 | 90 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
92 | | simprlr 777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑐 ∈ 𝐵) |
93 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑐 → (𝐷‘𝑎) = (𝐷‘𝑐)) |
94 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑐 → (𝐸‘𝑎) = (𝐸‘𝑐)) |
95 | 94 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑐 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐))) |
96 | 93, 95 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑐 → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = ((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)))) |
97 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐))) ∈ V |
98 | 96, 39, 97 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) = ((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)))) |
99 | 92, 98 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) = ((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)))) |
100 | | simprrl 778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑑 ∈ 𝐵) |
101 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑑 → (𝐷‘𝑎) = (𝐷‘𝑑)) |
102 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑑 → (𝐸‘𝑎) = (𝐸‘𝑑)) |
103 | 102 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))) |
104 | 101, 103 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑑 → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) |
105 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))) ∈ V |
106 | 104, 39, 105 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ 𝐵 → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑) = ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) |
107 | 100, 106 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑) = ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) |
108 | 99, 107 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)) = (((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐))) + ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))))) |
109 | | ringabl 19819 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
110 | 9, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Abel) |
111 | 110 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ Abel) |
112 | 13 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐷:𝐵⟶𝐾) |
113 | 112, 92 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐷‘𝑐) ∈ 𝐾) |
114 | 112, 100 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐷‘𝑑) ∈ 𝐾) |
115 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ Ring) |
116 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐷‘(1r‘𝐴)) ∈ 𝐾) |
117 | 26 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐸:𝐵⟶𝐾) |
118 | 117, 92 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐸‘𝑐) ∈ 𝐾) |
119 | 3, 7 | ringcl 19800 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾 ∧ (𝐸‘𝑐) ∈ 𝐾) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) ∈ 𝐾) |
120 | 115, 116,
118, 119 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) ∈ 𝐾) |
121 | 117, 100 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐸‘𝑑) ∈ 𝐾) |
122 | 3, 7 | ringcl 19800 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾 ∧ (𝐸‘𝑑) ∈ 𝐾) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)) ∈ 𝐾) |
123 | 115, 116,
121, 122 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)) ∈ 𝐾) |
124 | 3, 6, 30 | ablsub4 19414 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Abel ∧ ((𝐷‘𝑐) ∈ 𝐾 ∧ (𝐷‘𝑑) ∈ 𝐾) ∧ (((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) ∈ 𝐾 ∧ ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)) ∈ 𝐾)) → (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)(((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) + ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) = (((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐))) + ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))))) |
125 | 111, 113,
114, 120, 123, 124 | syl122anc 1378 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)(((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) + ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) = (((𝐷‘𝑐)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐))) + ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))))) |
126 | 3, 6, 7 | ringdi 19805 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ ((𝐷‘(1r‘𝐴)) ∈ 𝐾 ∧ (𝐸‘𝑐) ∈ 𝐾 ∧ (𝐸‘𝑑) ∈ 𝐾)) → ((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑))) = (((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) + ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) |
127 | 115, 116,
118, 121, 126 | syl13anc 1371 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑))) = (((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) + ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) |
128 | 127 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) + ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))) = ((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑)))) |
129 | 128 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)(((𝐷‘(1r‘𝐴)) · (𝐸‘𝑐)) + ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) = (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑))))) |
130 | 108, 125,
129 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)) = (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑))))) |
131 | 130 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)) = (((𝐷‘𝑐) + (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · ((𝐸‘𝑐) + (𝐸‘𝑑))))) |
132 | 88, 91, 131 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑))) |
133 | 132 | 3expia 1120 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
134 | 133 | anassrs 468 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
135 | 134 | ralrimivva 3123 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
136 | 135 | ralrimivva 3123 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) + ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
137 | | simp1 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝜑) |
138 | | simp2ll 1239 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑏 ∈ 𝐵) |
139 | | simp2lr 1240 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑐 ∈ 𝐾) |
140 | | simp2rl 1241 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑑 ∈ 𝐵) |
141 | | simp2rr 1242 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑒 ∈ 𝑁) |
142 | | simp3l 1200 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁)))) |
143 | | simp3r 1201 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) |
144 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13,
55, 56, 57 | mdetunilem4 21764 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾 ∧ 𝑑 ∈ 𝐵) ∧ (𝑒 ∈ 𝑁 ∧ (𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷‘𝑏) = (𝑐 · (𝐷‘𝑑))) |
145 | 137, 138,
139, 140, 141, 142, 143, 144 | syl133anc 1392 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷‘𝑏) = (𝑐 · (𝐷‘𝑑))) |
146 | 23 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑅 ∈ CRing) |
147 | 24, 1, 2, 3, 7, 146, 138, 139, 140, 141, 142, 143 | mdetrsca 21752 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐸‘𝑏) = (𝑐 · (𝐸‘𝑑))) |
148 | 147 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)) = ((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑)))) |
149 | 145, 148 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏))) = ((𝑐 · (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑))))) |
150 | | simprll 776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑏 ∈ 𝐵) |
151 | 150, 41 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
152 | 151 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = ((𝐷‘𝑏)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑏)))) |
153 | | simprrl 778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑑 ∈ 𝐵) |
154 | 153, 106 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑) = ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) |
155 | 154 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)) = (𝑐 · ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))))) |
156 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑅 ∈ Ring) |
157 | | simprlr 777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝑐 ∈ 𝐾) |
158 | 13 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐷:𝐵⟶𝐾) |
159 | 158, 153 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐷‘𝑑) ∈ 𝐾) |
160 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐷‘(1r‘𝐴)) ∈ 𝐾) |
161 | 26 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → 𝐸:𝐵⟶𝐾) |
162 | 161, 153 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝐸‘𝑑) ∈ 𝐾) |
163 | 156, 160,
162, 122 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)) ∈ 𝐾) |
164 | 3, 7, 30, 156, 157, 159, 163 | ringsubdi 19838 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐 · ((𝐷‘𝑑)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) = ((𝑐 · (𝐷‘𝑑))(-g‘𝑅)(𝑐 · ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))))) |
165 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
166 | 165 | crngmgp 19791 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
167 | 23, 166 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
168 | 167 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (mulGrp‘𝑅) ∈ CMnd) |
169 | 165, 3 | mgpbas 19726 |
. . . . . . . . . . . . . . 15
⊢ 𝐾 =
(Base‘(mulGrp‘𝑅)) |
170 | 165, 7 | mgpplusg 19724 |
. . . . . . . . . . . . . . 15
⊢ · =
(+g‘(mulGrp‘𝑅)) |
171 | 169, 170 | cmn12 19407 |
. . . . . . . . . . . . . 14
⊢
(((mulGrp‘𝑅)
∈ CMnd ∧ (𝑐 ∈
𝐾 ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾 ∧ (𝐸‘𝑑) ∈ 𝐾)) → (𝑐 · ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))) = ((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑)))) |
172 | 168, 157,
160, 162, 171 | syl13anc 1371 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐 · ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑))) = ((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑)))) |
173 | 172 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → ((𝑐 · (𝐷‘𝑑))(-g‘𝑅)(𝑐 · ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑑)))) = ((𝑐 · (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑))))) |
174 | 155, 164,
173 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)) = ((𝑐 · (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑))))) |
175 | 174 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)) = ((𝑐 · (𝐷‘𝑑))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝑐 · (𝐸‘𝑑))))) |
176 | 149, 152,
175 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑))) |
177 | 176 | 3expia 1120 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁))) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
178 | 177 | anassrs 468 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾)) ∧ (𝑑 ∈ 𝐵 ∧ 𝑒 ∈ 𝑁)) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
179 | 178 | ralrimivva 3123 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐾)) → ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
180 | 179 | ralrimivva 3123 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐾 ∀𝑑 ∈ 𝐵 ∀𝑒 ∈ 𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑏) = (𝑐 · ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑑)))) |
181 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)))) = (𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))) |
182 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑎 = (1r‘𝐴) → (𝐷‘𝑎) = (𝐷‘(1r‘𝐴))) |
183 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑎 = (1r‘𝐴) → (𝐸‘𝑎) = (𝐸‘(1r‘𝐴))) |
184 | 183 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑎 = (1r‘𝐴) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) = ((𝐷‘(1r‘𝐴)) · (𝐸‘(1r‘𝐴)))) |
185 | 182, 184 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑎 = (1r‘𝐴) → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = ((𝐷‘(1r‘𝐴))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘(1r‘𝐴))))) |
186 | 24, 1, 18, 5 | mdet1 21750 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐸‘(1r‘𝐴)) = 1 ) |
187 | 23, 8, 186 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘(1r‘𝐴)) = 1 ) |
188 | 187 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘(1r‘𝐴))) = ((𝐷‘(1r‘𝐴)) · 1 )) |
189 | 3, 7, 5 | ringridm 19811 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾) → ((𝐷‘(1r‘𝐴)) · 1 ) = (𝐷‘(1r‘𝐴))) |
190 | 9, 21, 189 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · 1 ) = (𝐷‘(1r‘𝐴))) |
191 | 188, 190 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘(1r‘𝐴))) = (𝐷‘(1r‘𝐴))) |
192 | 191 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷‘(1r‘𝐴))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘(1r‘𝐴)))) = ((𝐷‘(1r‘𝐴))(-g‘𝑅)(𝐷‘(1r‘𝐴)))) |
193 | 3, 4, 30 | grpsubid 18659 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾) → ((𝐷‘(1r‘𝐴))(-g‘𝑅)(𝐷‘(1r‘𝐴))) = 0 ) |
194 | 11, 21, 193 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷‘(1r‘𝐴))(-g‘𝑅)(𝐷‘(1r‘𝐴))) = 0 ) |
195 | 192, 194 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐷‘(1r‘𝐴))(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘(1r‘𝐴)))) = 0 ) |
196 | 185, 195 | sylan9eqr 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = (1r‘𝐴)) → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = 0 ) |
197 | 4 | fvexi 6788 |
. . . . . . 7
⊢ 0 ∈
V |
198 | 197 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈ V) |
199 | 181, 196,
20, 198 | fvmptd 6882 |
. . . . 5
⊢ (𝜑 → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘(1r‘𝐴)) = 0 ) |
200 | | eqid 2738 |
. . . . 5
⊢ {𝑏 ∣ ∀𝑐 ∈ 𝐵 ∀𝑑 ∈ (𝑁 ↑m 𝑁)(∀𝑒 ∈ 𝑏 (𝑐‘𝑒) = if(𝑒 ∈ 𝑑, 1 , 0 ) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) = 0 )} = {𝑏 ∣ ∀𝑐 ∈ 𝐵 ∀𝑑 ∈ (𝑁 ↑m 𝑁)(∀𝑒 ∈ 𝑏 (𝑐‘𝑒) = if(𝑒 ∈ 𝑑, 1 , 0 ) → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝑐) = 0 )} |
201 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 33,
74, 136, 180, 199, 200 | mdetunilem9 21769 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)))) = (𝐵 × { 0 })) |
202 | 201 | fveq1d 6776 |
. . 3
⊢ (𝜑 → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝐹) = ((𝐵 × { 0 })‘𝐹)) |
203 | | fveq2 6774 |
. . . . . 6
⊢ (𝑎 = 𝐹 → (𝐷‘𝑎) = (𝐷‘𝐹)) |
204 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑎 = 𝐹 → (𝐸‘𝑎) = (𝐸‘𝐹)) |
205 | 204 | oveq2d 7291 |
. . . . . 6
⊢ (𝑎 = 𝐹 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎)) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |
206 | 203, 205 | oveq12d 7293 |
. . . . 5
⊢ (𝑎 = 𝐹 → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = ((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)))) |
207 | 206 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 = 𝐹) → ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))) = ((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)))) |
208 | | mdetuni.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
209 | | ovexd 7310 |
. . . 4
⊢ (𝜑 → ((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) ∈ V) |
210 | 181, 207,
208, 209 | fvmptd 6882 |
. . 3
⊢ (𝜑 → ((𝑎 ∈ 𝐵 ↦ ((𝐷‘𝑎)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝑎))))‘𝐹) = ((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)))) |
211 | 197 | fvconst2 7079 |
. . . 4
⊢ (𝐹 ∈ 𝐵 → ((𝐵 × { 0 })‘𝐹) = 0 ) |
212 | 208, 211 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐵 × { 0 })‘𝐹) = 0 ) |
213 | 202, 210,
212 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → ((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) = 0 ) |
214 | 13, 208 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐷‘𝐹) ∈ 𝐾) |
215 | 26, 208 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝐸‘𝐹) ∈ 𝐾) |
216 | 3, 7 | ringcl 19800 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(1r‘𝐴)) ∈ 𝐾 ∧ (𝐸‘𝐹) ∈ 𝐾) → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) ∈ 𝐾) |
217 | 9, 21, 215, 216 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) ∈ 𝐾) |
218 | 3, 4, 30 | grpsubeq0 18661 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ (𝐷‘𝐹) ∈ 𝐾 ∧ ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)) ∈ 𝐾) → (((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) = 0 ↔ (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)))) |
219 | 11, 214, 217, 218 | syl3anc 1370 |
. 2
⊢ (𝜑 → (((𝐷‘𝐹)(-g‘𝑅)((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) = 0 ↔ (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹)))) |
220 | 213, 219 | mpbid 231 |
1
⊢ (𝜑 → (𝐷‘𝐹) = ((𝐷‘(1r‘𝐴)) · (𝐸‘𝐹))) |