MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetuni0 Structured version   Visualization version   GIF version

Theorem mdetuni0 22515
Description: Lemma for mdetuni 22516. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetuni.e 𝐸 = (𝑁 maDet 𝑅)
mdetuni.cr (𝜑𝑅 ∈ CRing)
mdetuni.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mdetuni0 (𝜑 → (𝐷𝐹) = ((𝐷‘(1r𝐴)) · (𝐸𝐹)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐾,𝑦,𝑧,𝑤   𝑥,𝑁,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝑥, · ,𝑦,𝑧,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, 0 ,𝑦,𝑧,𝑤   𝑥, 1 ,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝐴,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤

Proof of Theorem mdetuni0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetuni.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 mdetuni.b . . . . 5 𝐵 = (Base‘𝐴)
3 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
4 mdetuni.0g . . . . 5 0 = (0g𝑅)
5 mdetuni.1r . . . . 5 1 = (1r𝑅)
6 mdetuni.pg . . . . 5 + = (+g𝑅)
7 mdetuni.tg . . . . 5 · = (.r𝑅)
8 mdetuni.n . . . . 5 (𝜑𝑁 ∈ Fin)
9 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
10 ringgrp 20154 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
119, 10syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
1211adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ Grp)
13 mdetuni.ff . . . . . . . 8 (𝜑𝐷:𝐵𝐾)
1413ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐷𝑎) ∈ 𝐾)
159adantr 480 . . . . . . . 8 ((𝜑𝑎𝐵) → 𝑅 ∈ Ring)
168, 9jca 511 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
171matring 22337 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
18 eqid 2730 . . . . . . . . . . . 12 (1r𝐴) = (1r𝐴)
192, 18ringidcl 20181 . . . . . . . . . . 11 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2016, 17, 193syl 18 . . . . . . . . . 10 (𝜑 → (1r𝐴) ∈ 𝐵)
2113, 20ffvelcdmd 7060 . . . . . . . . 9 (𝜑 → (𝐷‘(1r𝐴)) ∈ 𝐾)
2221adantr 480 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝐷‘(1r𝐴)) ∈ 𝐾)
23 mdetuni.cr . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
24 mdetuni.e . . . . . . . . . . 11 𝐸 = (𝑁 maDet 𝑅)
2524, 1, 2, 3mdetf 22489 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝐸:𝐵𝐾)
2623, 25syl 17 . . . . . . . . 9 (𝜑𝐸:𝐵𝐾)
2726ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝐸𝑎) ∈ 𝐾)
283, 7ringcl 20166 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐷‘(1r𝐴)) ∈ 𝐾 ∧ (𝐸𝑎) ∈ 𝐾) → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) ∈ 𝐾)
2915, 22, 27, 28syl3anc 1373 . . . . . . 7 ((𝜑𝑎𝐵) → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) ∈ 𝐾)
30 eqid 2730 . . . . . . . 8 (-g𝑅) = (-g𝑅)
313, 30grpsubcl 18959 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝐷𝑎) ∈ 𝐾 ∧ ((𝐷‘(1r𝐴)) · (𝐸𝑎)) ∈ 𝐾) → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) ∈ 𝐾)
3212, 14, 29, 31syl3anc 1373 . . . . . 6 ((𝜑𝑎𝐵) → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) ∈ 𝐾)
3332fmpttd 7090 . . . . 5 (𝜑 → (𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎)))):𝐵𝐾)
34 simpr1 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁)) → 𝑏𝐵)
35 fveq2 6861 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝐷𝑎) = (𝐷𝑏))
36 fveq2 6861 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐸𝑎) = (𝐸𝑏))
3736oveq2d 7406 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) = ((𝐷‘(1r𝐴)) · (𝐸𝑏)))
3835, 37oveq12d 7408 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
39 eqid 2730 . . . . . . . . . . 11 (𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎)))) = (𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))
40 ovex 7423 . . . . . . . . . . 11 ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))) ∈ V
4138, 39, 40fvmpt 6971 . . . . . . . . . 10 (𝑏𝐵 → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
4234, 41syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁)) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
43423adant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
44 simp1 1136 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝜑)
45 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑏𝐵)
46 simp3r 1203 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))
47 oveq2 7398 . . . . . . . . . . . . 13 (𝑒 = 𝑤 → (𝑐𝑏𝑒) = (𝑐𝑏𝑤))
48 oveq2 7398 . . . . . . . . . . . . 13 (𝑒 = 𝑤 → (𝑑𝑏𝑒) = (𝑑𝑏𝑤))
4947, 48eqeq12d 2746 . . . . . . . . . . . 12 (𝑒 = 𝑤 → ((𝑐𝑏𝑒) = (𝑑𝑏𝑒) ↔ (𝑐𝑏𝑤) = (𝑑𝑏𝑤)))
5049cbvralvw 3216 . . . . . . . . . . 11 (∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒) ↔ ∀𝑤𝑁 (𝑐𝑏𝑤) = (𝑑𝑏𝑤))
5146, 50sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ∀𝑤𝑁 (𝑐𝑏𝑤) = (𝑑𝑏𝑤))
52 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑐𝑁)
53 simp23 1209 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑑𝑁)
54 simp3l 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑐𝑑)
55 mdetuni.al . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
56 mdetuni.li . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
57 mdetuni.sc . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 13, 55, 56, 57mdetunilem1 22506 . . . . . . . . . 10 (((𝜑𝑏𝐵 ∧ ∀𝑤𝑁 (𝑐𝑏𝑤) = (𝑑𝑏𝑤)) ∧ (𝑐𝑁𝑑𝑁𝑐𝑑)) → (𝐷𝑏) = 0 )
5944, 45, 51, 52, 53, 54, 58syl33anc 1387 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → (𝐷𝑏) = 0 )
60233ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → 𝑅 ∈ CRing)
6124, 1, 2, 4, 60, 45, 52, 53, 54, 46mdetralt 22502 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → (𝐸𝑏) = 0 )
6261oveq2d 7406 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝐷‘(1r𝐴)) · (𝐸𝑏)) = ((𝐷‘(1r𝐴)) · 0 ))
6359, 62oveq12d 7408 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))) = ( 0 (-g𝑅)((𝐷‘(1r𝐴)) · 0 )))
643, 7, 4ringrz 20210 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝐷‘(1r𝐴)) ∈ 𝐾) → ((𝐷‘(1r𝐴)) · 0 ) = 0 )
659, 21, 64syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐷‘(1r𝐴)) · 0 ) = 0 )
6665oveq2d 7406 . . . . . . . . . 10 (𝜑 → ( 0 (-g𝑅)((𝐷‘(1r𝐴)) · 0 )) = ( 0 (-g𝑅) 0 ))
673, 4grpidcl 18904 . . . . . . . . . . 11 (𝑅 ∈ Grp → 0𝐾)
683, 4, 30grpsubid 18963 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 0𝐾) → ( 0 (-g𝑅) 0 ) = 0 )
6911, 67, 68syl2anc2 585 . . . . . . . . . 10 (𝜑 → ( 0 (-g𝑅) 0 ) = 0 )
7066, 69eqtrd 2765 . . . . . . . . 9 (𝜑 → ( 0 (-g𝑅)((𝐷‘(1r𝐴)) · 0 )) = 0 )
71703ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ( 0 (-g𝑅)((𝐷‘(1r𝐴)) · 0 )) = 0 )
7243, 63, 713eqtrd 2769 . . . . . . 7 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁) ∧ (𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = 0 )
73723expia 1121 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝑁𝑑𝑁)) → ((𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = 0 ))
7473ralrimivvva 3184 . . . . 5 (𝜑 → ∀𝑏𝐵𝑐𝑁𝑑𝑁 ((𝑐𝑑 ∧ ∀𝑒𝑁 (𝑐𝑏𝑒) = (𝑑𝑏𝑒)) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = 0 ))
75 simp1 1136 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝜑)
76 simp2ll 1241 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑏𝐵)
77 simp2lr 1242 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑐𝐵)
78 simp2rl 1243 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑑𝐵)
79 simp2rr 1244 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑒𝑁)
80 simp31 1210 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))))
81 simp32 1211 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))
82 simp33 1212 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))
831, 2, 3, 4, 5, 6, 7, 8, 9, 13, 55, 56, 57mdetunilem3 22508 . . . . . . . . . . . 12 (((𝜑𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁 ∧ (𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁)))) ∧ ((𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷𝑏) = ((𝐷𝑐) + (𝐷𝑑)))
8475, 76, 77, 78, 79, 80, 81, 82, 83syl332anc 1403 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷𝑏) = ((𝐷𝑐) + (𝐷𝑑)))
85233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑅 ∈ CRing)
8624, 1, 2, 6, 85, 76, 77, 78, 79, 80, 81, 82mdetrlin 22496 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐸𝑏) = ((𝐸𝑐) + (𝐸𝑑)))
8786oveq2d 7406 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷‘(1r𝐴)) · (𝐸𝑏)) = ((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑))))
8884, 87oveq12d 7408 . . . . . . . . . 10 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))) = (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑)))))
89 simprll 778 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝑏𝐵)
9089, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
91903adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
92 simprlr 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝑐𝐵)
93 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 → (𝐷𝑎) = (𝐷𝑐))
94 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (𝐸𝑎) = (𝐸𝑐))
9594oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) = ((𝐷‘(1r𝐴)) · (𝐸𝑐)))
9693, 95oveq12d 7408 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = ((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))))
97 ovex 7423 . . . . . . . . . . . . . . 15 ((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))) ∈ V
9896, 39, 97fvmpt 6971 . . . . . . . . . . . . . 14 (𝑐𝐵 → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) = ((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))))
9992, 98syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) = ((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))))
100 simprrl 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝑑𝐵)
101 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑑 → (𝐷𝑎) = (𝐷𝑑))
102 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑑 → (𝐸𝑎) = (𝐸𝑑))
103102oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑑 → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) = ((𝐷‘(1r𝐴)) · (𝐸𝑑)))
104101, 103oveq12d 7408 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑))))
105 ovex 7423 . . . . . . . . . . . . . . 15 ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑))) ∈ V
106104, 39, 105fvmpt 6971 . . . . . . . . . . . . . 14 (𝑑𝐵 → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑) = ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑))))
107100, 106syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑) = ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑))))
10899, 107oveq12d 7408 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)) = (((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))) + ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑)))))
109 ringabl 20197 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
1109, 109syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Abel)
111110adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝑅 ∈ Abel)
11213adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝐷:𝐵𝐾)
113112, 92ffvelcdmd 7060 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (𝐷𝑐) ∈ 𝐾)
114112, 100ffvelcdmd 7060 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (𝐷𝑑) ∈ 𝐾)
1159adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝑅 ∈ Ring)
11621adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (𝐷‘(1r𝐴)) ∈ 𝐾)
11726adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → 𝐸:𝐵𝐾)
118117, 92ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (𝐸𝑐) ∈ 𝐾)
1193, 7ringcl 20166 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝐷‘(1r𝐴)) ∈ 𝐾 ∧ (𝐸𝑐) ∈ 𝐾) → ((𝐷‘(1r𝐴)) · (𝐸𝑐)) ∈ 𝐾)
120115, 116, 118, 119syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → ((𝐷‘(1r𝐴)) · (𝐸𝑐)) ∈ 𝐾)
121117, 100ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (𝐸𝑑) ∈ 𝐾)
1223, 7ringcl 20166 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝐷‘(1r𝐴)) ∈ 𝐾 ∧ (𝐸𝑑) ∈ 𝐾) → ((𝐷‘(1r𝐴)) · (𝐸𝑑)) ∈ 𝐾)
123115, 116, 121, 122syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → ((𝐷‘(1r𝐴)) · (𝐸𝑑)) ∈ 𝐾)
1243, 6, 30ablsub4 19747 . . . . . . . . . . . . 13 ((𝑅 ∈ Abel ∧ ((𝐷𝑐) ∈ 𝐾 ∧ (𝐷𝑑) ∈ 𝐾) ∧ (((𝐷‘(1r𝐴)) · (𝐸𝑐)) ∈ 𝐾 ∧ ((𝐷‘(1r𝐴)) · (𝐸𝑑)) ∈ 𝐾)) → (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)(((𝐷‘(1r𝐴)) · (𝐸𝑐)) + ((𝐷‘(1r𝐴)) · (𝐸𝑑)))) = (((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))) + ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑)))))
125111, 113, 114, 120, 123, 124syl122anc 1381 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)(((𝐷‘(1r𝐴)) · (𝐸𝑐)) + ((𝐷‘(1r𝐴)) · (𝐸𝑑)))) = (((𝐷𝑐)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑐))) + ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑)))))
1263, 6, 7ringdi 20177 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((𝐷‘(1r𝐴)) ∈ 𝐾 ∧ (𝐸𝑐) ∈ 𝐾 ∧ (𝐸𝑑) ∈ 𝐾)) → ((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑))) = (((𝐷‘(1r𝐴)) · (𝐸𝑐)) + ((𝐷‘(1r𝐴)) · (𝐸𝑑))))
127115, 116, 118, 121, 126syl13anc 1374 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → ((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑))) = (((𝐷‘(1r𝐴)) · (𝐸𝑐)) + ((𝐷‘(1r𝐴)) · (𝐸𝑑))))
128127eqcomd 2736 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (((𝐷‘(1r𝐴)) · (𝐸𝑐)) + ((𝐷‘(1r𝐴)) · (𝐸𝑑))) = ((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑))))
129128oveq2d 7406 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)(((𝐷‘(1r𝐴)) · (𝐸𝑐)) + ((𝐷‘(1r𝐴)) · (𝐸𝑑)))) = (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑)))))
130108, 125, 1293eqtr2d 2771 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)) = (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑)))))
1311303adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)) = (((𝐷𝑐) + (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · ((𝐸𝑐) + (𝐸𝑑)))))
13288, 91, 1313eqtr4d 2775 . . . . . . . . 9 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)))
1331323expia 1121 . . . . . . . 8 ((𝜑 ∧ ((𝑏𝐵𝑐𝐵) ∧ (𝑑𝐵𝑒𝑁))) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
134133anassrs 467 . . . . . . 7 (((𝜑 ∧ (𝑏𝐵𝑐𝐵)) ∧ (𝑑𝐵𝑒𝑁)) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
135134ralrimivva 3181 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐵)) → ∀𝑑𝐵𝑒𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
136135ralrimivva 3181 . . . . 5 (𝜑 → ∀𝑏𝐵𝑐𝐵𝑑𝐵𝑒𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((𝑐 ↾ ({𝑒} × 𝑁)) ∘f + (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑐 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) + ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
137 simp1 1136 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝜑)
138 simp2ll 1241 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑏𝐵)
139 simp2lr 1242 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑐𝐾)
140 simp2rl 1243 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑑𝐵)
141 simp2rr 1244 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑒𝑁)
142 simp3l 1202 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))))
143 simp3r 1203 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))
1441, 2, 3, 4, 5, 6, 7, 8, 9, 13, 55, 56, 57mdetunilem4 22509 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐵𝑐𝐾𝑑𝐵) ∧ (𝑒𝑁 ∧ (𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷𝑏) = (𝑐 · (𝐷𝑑)))
145137, 138, 139, 140, 141, 142, 143, 144syl133anc 1395 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐷𝑏) = (𝑐 · (𝐷𝑑)))
146233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → 𝑅 ∈ CRing)
14724, 1, 2, 3, 7, 146, 138, 139, 140, 141, 142, 143mdetrsca 22497 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝐸𝑏) = (𝑐 · (𝐸𝑑)))
148147oveq2d 7406 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷‘(1r𝐴)) · (𝐸𝑏)) = ((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑))))
149145, 148oveq12d 7408 . . . . . . . . . 10 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))) = ((𝑐 · (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑)))))
150 simprll 778 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → 𝑏𝐵)
151150, 41syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
1521513adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = ((𝐷𝑏)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑏))))
153 simprrl 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → 𝑑𝐵)
154153, 106syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑) = ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑))))
155154oveq2d 7406 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)) = (𝑐 · ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑)))))
1569adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → 𝑅 ∈ Ring)
157 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → 𝑐𝐾)
15813adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → 𝐷:𝐵𝐾)
159158, 153ffvelcdmd 7060 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝐷𝑑) ∈ 𝐾)
16021adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝐷‘(1r𝐴)) ∈ 𝐾)
16126adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → 𝐸:𝐵𝐾)
162161, 153ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝐸𝑑) ∈ 𝐾)
163156, 160, 162, 122syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → ((𝐷‘(1r𝐴)) · (𝐸𝑑)) ∈ 𝐾)
1643, 7, 30, 156, 157, 159, 163ringsubdi 20223 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝑐 · ((𝐷𝑑)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑑)))) = ((𝑐 · (𝐷𝑑))(-g𝑅)(𝑐 · ((𝐷‘(1r𝐴)) · (𝐸𝑑)))))
165 eqid 2730 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑅) = (mulGrp‘𝑅)
166165crngmgp 20157 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
16723, 166syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
168167adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (mulGrp‘𝑅) ∈ CMnd)
169165, 3mgpbas 20061 . . . . . . . . . . . . . . 15 𝐾 = (Base‘(mulGrp‘𝑅))
170165, 7mgpplusg 20060 . . . . . . . . . . . . . . 15 · = (+g‘(mulGrp‘𝑅))
171169, 170cmn12 19739 . . . . . . . . . . . . . 14 (((mulGrp‘𝑅) ∈ CMnd ∧ (𝑐𝐾 ∧ (𝐷‘(1r𝐴)) ∈ 𝐾 ∧ (𝐸𝑑) ∈ 𝐾)) → (𝑐 · ((𝐷‘(1r𝐴)) · (𝐸𝑑))) = ((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑))))
172168, 157, 160, 162, 171syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝑐 · ((𝐷‘(1r𝐴)) · (𝐸𝑑))) = ((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑))))
173172oveq2d 7406 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → ((𝑐 · (𝐷𝑑))(-g𝑅)(𝑐 · ((𝐷‘(1r𝐴)) · (𝐸𝑑)))) = ((𝑐 · (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑)))))
174155, 164, 1733eqtrd 2769 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)) = ((𝑐 · (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑)))))
1751743adant3 1132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)) = ((𝑐 · (𝐷𝑑))(-g𝑅)((𝐷‘(1r𝐴)) · (𝑐 · (𝐸𝑑)))))
176149, 152, 1753eqtr4d 2775 . . . . . . . . 9 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁)) ∧ ((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑)))
1771763expia 1121 . . . . . . . 8 ((𝜑 ∧ ((𝑏𝐵𝑐𝐾) ∧ (𝑑𝐵𝑒𝑁))) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
178177anassrs 467 . . . . . . 7 (((𝜑 ∧ (𝑏𝐵𝑐𝐾)) ∧ (𝑑𝐵𝑒𝑁)) → (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
179178ralrimivva 3181 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐾)) → ∀𝑑𝐵𝑒𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
180179ralrimivva 3181 . . . . 5 (𝜑 → ∀𝑏𝐵𝑐𝐾𝑑𝐵𝑒𝑁 (((𝑏 ↾ ({𝑒} × 𝑁)) = ((({𝑒} × 𝑁) × {𝑐}) ∘f · (𝑑 ↾ ({𝑒} × 𝑁))) ∧ (𝑏 ↾ ((𝑁 ∖ {𝑒}) × 𝑁)) = (𝑑 ↾ ((𝑁 ∖ {𝑒}) × 𝑁))) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑏) = (𝑐 · ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑑))))
181 eqidd 2731 . . . . . 6 (𝜑 → (𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎)))) = (𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎)))))
182 fveq2 6861 . . . . . . . 8 (𝑎 = (1r𝐴) → (𝐷𝑎) = (𝐷‘(1r𝐴)))
183 fveq2 6861 . . . . . . . . 9 (𝑎 = (1r𝐴) → (𝐸𝑎) = (𝐸‘(1r𝐴)))
184183oveq2d 7406 . . . . . . . 8 (𝑎 = (1r𝐴) → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) = ((𝐷‘(1r𝐴)) · (𝐸‘(1r𝐴))))
185182, 184oveq12d 7408 . . . . . . 7 (𝑎 = (1r𝐴) → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = ((𝐷‘(1r𝐴))(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸‘(1r𝐴)))))
18624, 1, 18, 5mdet1 22495 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐸‘(1r𝐴)) = 1 )
18723, 8, 186syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐸‘(1r𝐴)) = 1 )
188187oveq2d 7406 . . . . . . . . . 10 (𝜑 → ((𝐷‘(1r𝐴)) · (𝐸‘(1r𝐴))) = ((𝐷‘(1r𝐴)) · 1 ))
1893, 7, 5ringridm 20186 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐷‘(1r𝐴)) ∈ 𝐾) → ((𝐷‘(1r𝐴)) · 1 ) = (𝐷‘(1r𝐴)))
1909, 21, 189syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐷‘(1r𝐴)) · 1 ) = (𝐷‘(1r𝐴)))
191188, 190eqtrd 2765 . . . . . . . . 9 (𝜑 → ((𝐷‘(1r𝐴)) · (𝐸‘(1r𝐴))) = (𝐷‘(1r𝐴)))
192191oveq2d 7406 . . . . . . . 8 (𝜑 → ((𝐷‘(1r𝐴))(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸‘(1r𝐴)))) = ((𝐷‘(1r𝐴))(-g𝑅)(𝐷‘(1r𝐴))))
1933, 4, 30grpsubid 18963 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ (𝐷‘(1r𝐴)) ∈ 𝐾) → ((𝐷‘(1r𝐴))(-g𝑅)(𝐷‘(1r𝐴))) = 0 )
19411, 21, 193syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐷‘(1r𝐴))(-g𝑅)(𝐷‘(1r𝐴))) = 0 )
195192, 194eqtrd 2765 . . . . . . 7 (𝜑 → ((𝐷‘(1r𝐴))(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸‘(1r𝐴)))) = 0 )
196185, 195sylan9eqr 2787 . . . . . 6 ((𝜑𝑎 = (1r𝐴)) → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = 0 )
1974fvexi 6875 . . . . . . 7 0 ∈ V
198197a1i 11 . . . . . 6 (𝜑0 ∈ V)
199181, 196, 20, 198fvmptd 6978 . . . . 5 (𝜑 → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘(1r𝐴)) = 0 )
200 eqid 2730 . . . . 5 {𝑏 ∣ ∀𝑐𝐵𝑑 ∈ (𝑁m 𝑁)(∀𝑒𝑏 (𝑐𝑒) = if(𝑒𝑑, 1 , 0 ) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) = 0 )} = {𝑏 ∣ ∀𝑐𝐵𝑑 ∈ (𝑁m 𝑁)(∀𝑒𝑏 (𝑐𝑒) = if(𝑒𝑑, 1 , 0 ) → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝑐) = 0 )}
2011, 2, 3, 4, 5, 6, 7, 8, 9, 33, 74, 136, 180, 199, 200mdetunilem9 22514 . . . 4 (𝜑 → (𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎)))) = (𝐵 × { 0 }))
202201fveq1d 6863 . . 3 (𝜑 → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝐹) = ((𝐵 × { 0 })‘𝐹))
203 fveq2 6861 . . . . . 6 (𝑎 = 𝐹 → (𝐷𝑎) = (𝐷𝐹))
204 fveq2 6861 . . . . . . 7 (𝑎 = 𝐹 → (𝐸𝑎) = (𝐸𝐹))
205204oveq2d 7406 . . . . . 6 (𝑎 = 𝐹 → ((𝐷‘(1r𝐴)) · (𝐸𝑎)) = ((𝐷‘(1r𝐴)) · (𝐸𝐹)))
206203, 205oveq12d 7408 . . . . 5 (𝑎 = 𝐹 → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = ((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))))
207206adantl 481 . . . 4 ((𝜑𝑎 = 𝐹) → ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))) = ((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))))
208 mdetuni.f . . . 4 (𝜑𝐹𝐵)
209 ovexd 7425 . . . 4 (𝜑 → ((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))) ∈ V)
210181, 207, 208, 209fvmptd 6978 . . 3 (𝜑 → ((𝑎𝐵 ↦ ((𝐷𝑎)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝑎))))‘𝐹) = ((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))))
211197fvconst2 7181 . . . 4 (𝐹𝐵 → ((𝐵 × { 0 })‘𝐹) = 0 )
212208, 211syl 17 . . 3 (𝜑 → ((𝐵 × { 0 })‘𝐹) = 0 )
213202, 210, 2123eqtr3d 2773 . 2 (𝜑 → ((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))) = 0 )
21413, 208ffvelcdmd 7060 . . 3 (𝜑 → (𝐷𝐹) ∈ 𝐾)
21526, 208ffvelcdmd 7060 . . . 4 (𝜑 → (𝐸𝐹) ∈ 𝐾)
2163, 7ringcl 20166 . . . 4 ((𝑅 ∈ Ring ∧ (𝐷‘(1r𝐴)) ∈ 𝐾 ∧ (𝐸𝐹) ∈ 𝐾) → ((𝐷‘(1r𝐴)) · (𝐸𝐹)) ∈ 𝐾)
2179, 21, 215, 216syl3anc 1373 . . 3 (𝜑 → ((𝐷‘(1r𝐴)) · (𝐸𝐹)) ∈ 𝐾)
2183, 4, 30grpsubeq0 18965 . . 3 ((𝑅 ∈ Grp ∧ (𝐷𝐹) ∈ 𝐾 ∧ ((𝐷‘(1r𝐴)) · (𝐸𝐹)) ∈ 𝐾) → (((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))) = 0 ↔ (𝐷𝐹) = ((𝐷‘(1r𝐴)) · (𝐸𝐹))))
21911, 214, 217, 218syl3anc 1373 . 2 (𝜑 → (((𝐷𝐹)(-g𝑅)((𝐷‘(1r𝐴)) · (𝐸𝐹))) = 0 ↔ (𝐷𝐹) = ((𝐷‘(1r𝐴)) · (𝐸𝐹))))
220213, 219mpbid 232 1 (𝜑 → (𝐷𝐹) = ((𝐷‘(1r𝐴)) · (𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  Vcvv 3450  cdif 3914  ifcif 4491  {csn 4592  cmpt 5191   × cxp 5639  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Grpcgrp 18872  -gcsg 18874  CMndccmn 19717  Abelcabl 19718  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150   Mat cmat 22301   maDet cmdat 22478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428  df-evpm 19429  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302  df-mdet 22479
This theorem is referenced by:  mdetuni  22516  mdetmul  22517
  Copyright terms: Public domain W3C validator