Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21k Structured version   Visualization version   GIF version

Theorem cdleme21k 40447
Description: Eliminate 𝑆𝑇 condition in cdleme21 40446. (Contributed by NM, 26-Dec-2012.)
Hypotheses
Ref Expression
cdleme21.l = (le‘𝐾)
cdleme21.j = (join‘𝐾)
cdleme21.m = (meet‘𝐾)
cdleme21.a 𝐴 = (Atoms‘𝐾)
cdleme21.h 𝐻 = (LHyp‘𝐾)
cdleme21.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme21.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme21g.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme21g.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme21g.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme21g.n 𝑁 = ((𝑃 𝑄) (𝐹 𝐷))
cdleme21g.o 𝑂 = ((𝑃 𝑄) (𝐺 𝑌))
Assertion
Ref Expression
cdleme21k ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) → 𝑁 = 𝑂)

Proof of Theorem cdleme21k
StepHypRef Expression
1 oveq1 7353 . . . . . . . 8 (𝑆 = 𝑇 → (𝑆 𝑈) = (𝑇 𝑈))
2 oveq2 7354 . . . . . . . . . 10 (𝑆 = 𝑇 → (𝑃 𝑆) = (𝑃 𝑇))
32oveq1d 7361 . . . . . . . . 9 (𝑆 = 𝑇 → ((𝑃 𝑆) 𝑊) = ((𝑃 𝑇) 𝑊))
43oveq2d 7362 . . . . . . . 8 (𝑆 = 𝑇 → (𝑄 ((𝑃 𝑆) 𝑊)) = (𝑄 ((𝑃 𝑇) 𝑊)))
51, 4oveq12d 7364 . . . . . . 7 (𝑆 = 𝑇 → ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊))) = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊))))
6 cdleme21.f . . . . . . 7 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
7 cdleme21g.g . . . . . . 7 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
85, 6, 73eqtr4g 2791 . . . . . 6 (𝑆 = 𝑇𝐹 = 𝐺)
9 oveq2 7354 . . . . . . . 8 (𝑆 = 𝑇 → (𝑅 𝑆) = (𝑅 𝑇))
109oveq1d 7361 . . . . . . 7 (𝑆 = 𝑇 → ((𝑅 𝑆) 𝑊) = ((𝑅 𝑇) 𝑊))
11 cdleme21g.d . . . . . . 7 𝐷 = ((𝑅 𝑆) 𝑊)
12 cdleme21g.y . . . . . . 7 𝑌 = ((𝑅 𝑇) 𝑊)
1310, 11, 123eqtr4g 2791 . . . . . 6 (𝑆 = 𝑇𝐷 = 𝑌)
148, 13oveq12d 7364 . . . . 5 (𝑆 = 𝑇 → (𝐹 𝐷) = (𝐺 𝑌))
1514oveq2d 7362 . . . 4 (𝑆 = 𝑇 → ((𝑃 𝑄) (𝐹 𝐷)) = ((𝑃 𝑄) (𝐺 𝑌)))
16 cdleme21g.n . . . 4 𝑁 = ((𝑃 𝑄) (𝐹 𝐷))
17 cdleme21g.o . . . 4 𝑂 = ((𝑃 𝑄) (𝐺 𝑌))
1815, 16, 173eqtr4g 2791 . . 3 (𝑆 = 𝑇𝑁 = 𝑂)
1918eqeq1d 2733 . 2 (𝑆 = 𝑇 → (𝑁 = 𝑂𝑂 = 𝑂))
20 simpl11 1249 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpl12 1250 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simpl13 1251 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
23 simpl21 1252 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
24 simpl22 1253 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
25 simpl23 1254 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
26 simpl3l 1229 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → 𝑃𝑄)
27 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → 𝑆𝑇)
2826, 27jca 511 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (𝑃𝑄𝑆𝑇))
29 simpl3r 1230 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))
30 cdleme21.l . . . 4 = (le‘𝐾)
31 cdleme21.j . . . 4 = (join‘𝐾)
32 cdleme21.m . . . 4 = (meet‘𝐾)
33 cdleme21.a . . . 4 𝐴 = (Atoms‘𝐾)
34 cdleme21.h . . . 4 𝐻 = (LHyp‘𝐾)
35 cdleme21.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
3630, 31, 32, 33, 34, 35, 6, 7, 11, 12, 16, 17cdleme21 40446 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) → 𝑁 = 𝑂)
3720, 21, 22, 23, 24, 25, 28, 29, 36syl332anc 1403 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) ∧ 𝑆𝑇) → 𝑁 = 𝑂)
38 eqidd 2732 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) → 𝑂 = 𝑂)
3919, 37, 38pm2.61ne 3013 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))) → 𝑁 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39372  HLchlt 39459  LHypclh 40093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097
This theorem is referenced by:  cdleme24  40461  cdleme43fsv1snlem  40529  cdleme37m  40571
  Copyright terms: Public domain W3C validator