Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40n Structured version   Visualization version   GIF version

Theorem cdleme40n 40507
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. TODO get rid of '.<' class? (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40a1.y 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme40a1.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
cdleme40.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40.f 𝐹 = ((𝑃 𝑄) (𝑇 ((𝑆 𝑣) 𝑊)))
cdleme40a1.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, < )
cdleme40a1.z 𝑍 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹))
Assertion
Ref Expression
cdleme40n ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑅 / 𝑠𝑁𝑆 / 𝑢𝑉)
Distinct variable groups:   ,𝑠,𝑡,𝑦   𝑧,𝑈   𝑧,𝑅   𝑇,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑣,𝑦   𝑄,𝑠,𝑡,𝑦   𝑧,𝐾   𝑢,𝑃,𝑧   𝑢,𝑆,𝑧   𝑢,𝑄,𝑣,𝑧   𝑧,𝐻   𝑧,𝐹   𝑃,𝑠,𝑡,𝑣,𝑦   𝐸,𝑠   𝑢,𝑊,𝑧   𝑊,𝑠,𝑡,𝑣,𝑦   𝐵,𝑠,𝑡,𝑦   𝑢,𝐵,𝑣,𝑧   𝑦,𝑌   𝑢, ,𝑧   ,𝑠,𝑡,𝑣,𝑦   𝑢, ,𝑧   ,𝑠,𝑡,𝑣,𝑦   𝐴,𝑠,𝑡,𝑣,𝑦   𝑢, ,𝑣,𝑧   𝑡,𝑈,𝑣,𝑦   𝑡,𝐹   𝑡,𝐾,𝑣,𝑦   𝑡,𝑆,𝑣,𝑦   𝑡,𝐻,𝑣,𝑦   𝑢,𝐴,𝑧   𝑢,𝑇   𝑣,𝐷   𝑣,𝐼   𝑣,𝑁
Allowed substitution hints:   𝐶(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐷(𝑦,𝑧,𝑢,𝑡,𝑠)   𝑅(𝑢)   𝑆(𝑠)   < (𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑧,𝑣,𝑢,𝑡)   𝐹(𝑦,𝑣,𝑢,𝑠)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑢,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑋(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)   𝑍(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40n
StepHypRef Expression
1 cdleme40.b . . . 4 𝐵 = (Base‘𝐾)
21fvexi 6831 . . 3 𝐵 ∈ V
3 nfv 1915 . . . 4 𝑣(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆))
4 nfcv 2894 . . . . . 6 𝑣𝑅 / 𝑠𝑁
5 cdleme40a1.z . . . . . . 7 𝑍 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹))
6 nfra1 3256 . . . . . . . 8 𝑣𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹)
7 nfcv 2894 . . . . . . . 8 𝑣𝐵
86, 7nfriota 7310 . . . . . . 7 𝑣(𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹))
95, 8nfcxfr 2892 . . . . . 6 𝑣𝑍
104, 9nfne 3029 . . . . 5 𝑣𝑅 / 𝑠𝑁𝑍
1110a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → Ⅎ𝑣𝑅 / 𝑠𝑁𝑍)
125a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑍 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝐹)))
13 neeq2 2991 . . . . 5 (𝐹 = 𝑍 → (𝑅 / 𝑠𝑁𝐹𝑅 / 𝑠𝑁𝑍))
1413adantl 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ 𝐹 = 𝑍) → (𝑅 / 𝑠𝑁𝐹𝑅 / 𝑠𝑁𝑍))
15 simpl11 1249 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl12 1250 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
17 simpl13 1251 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
18 simpl21 1252 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑃𝑄)
19 simpl22 1253 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
20 simpl23 1254 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
21 simpl3 1194 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆))
22 simprl 770 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑣𝐴)
23 simprrl 780 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑣 𝑊)
24 simprrr 781 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑣 (𝑃 𝑄))
2522, 23, 243jca 1128 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))
26 cdleme40.l . . . . . . 7 = (le‘𝐾)
27 cdleme40.j . . . . . . 7 = (join‘𝐾)
28 cdleme40.m . . . . . . 7 = (meet‘𝐾)
29 cdleme40.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
30 cdleme40.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
31 cdleme40.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
32 cdleme40.e . . . . . . 7 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
33 cdleme40.g . . . . . . 7 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
34 cdleme40.i . . . . . . 7 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
35 cdleme40.n . . . . . . 7 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
36 cdleme40a1.y . . . . . . 7 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
37 cdleme40a1.c . . . . . . 7 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
38 cdleme40.t . . . . . . 7 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
39 cdleme40.f . . . . . . 7 𝐹 = ((𝑃 𝑄) (𝑇 ((𝑆 𝑣) 𝑊)))
401, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39cdleme40m 40506 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁𝐹)
4115, 16, 17, 18, 19, 20, 21, 25, 40syl332anc 1403 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ (𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁𝐹)
4241ex 412 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ((𝑣𝐴 ∧ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))) → 𝑅 / 𝑠𝑁𝐹))
43 simp1 1136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
44 simp23l 1295 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑆𝐴)
45 simp23r 1296 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ¬ 𝑆 𝑊)
46 simp21 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑃𝑄)
47 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑆 (𝑃 𝑄))
481, 26, 27, 28, 29, 30, 31, 38, 39, 5cdleme25cl 40396 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝑍𝐵)
4943, 44, 45, 46, 47, 48syl122anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑍𝐵)
50 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
51 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
52 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5326, 27, 29, 30cdlemb2 40080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑣𝐴𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))
5450, 51, 52, 46, 53syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → ∃𝑣𝐴𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))
553, 11, 12, 14, 42, 49, 54riotasv3d 38999 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) ∧ 𝐵 ∈ V) → 𝑅 / 𝑠𝑁𝑍)
562, 55mpan2 691 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑅 / 𝑠𝑁𝑍)
57 cdleme40a1.x . . . 4 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
58 cdleme40.o . . . 4 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
59 cdleme40.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, < )
6057, 58, 59, 39, 5cdleme31sn1c 40427 . . 3 ((𝑆𝐴𝑆 (𝑃 𝑄)) → 𝑆 / 𝑢𝑉 = 𝑍)
6144, 47, 60syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑆 / 𝑢𝑉 = 𝑍)
6256, 61neeqtrrd 3002 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆)) → 𝑅 / 𝑠𝑁𝑆 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  csb 3845  ifcif 4470   class class class wbr 5086  cfv 6476  crio 7297  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  meetcmee 18213  Atomscatm 39302  HLchlt 39389  LHypclh 40023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027
This theorem is referenced by:  cdleme40w  40509
  Copyright terms: Public domain W3C validator