MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplmulf1o Structured version   Visualization version   GIF version

Theorem grplmulf1o 19044
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b 𝐵 = (Base‘𝐺)
grplmulf1o.p + = (+g𝐺)
grplmulf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
Assertion
Ref Expression
grplmulf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grplmulf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
2 grplmulf1o.b . . . 4 𝐵 = (Base‘𝐺)
3 grplmulf1o.p . . . 4 + = (+g𝐺)
42, 3grpcl 18972 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
543expa 1117 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
6 eqid 2735 . . . 4 (invg𝐺) = (invg𝐺)
72, 6grpinvcl 19018 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
82, 3grpcl 18972 . . . 4 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
983expa 1117 . . 3 (((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
107, 9syldanl 602 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
11 eqcom 2742 . . 3 (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥)
12 simpll 767 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1310adantrl 716 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
14 simprl 771 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
15 simplr 769 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
162, 3grplcan 19031 . . . . 5 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵𝑥𝐵𝑋𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
1712, 13, 14, 15, 16syl13anc 1371 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
18 eqid 2735 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
192, 3, 18, 6grprinv 19021 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2019adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2120oveq1d 7446 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = ((0g𝐺) + 𝑦))
227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
23 simprr 773 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
242, 3, 12, 15, 22, 23grpassd 18976 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
252, 3, 18grplid 18998 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
2625ad2ant2rl 749 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
2721, 24, 263eqtr3d 2783 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = 𝑦)
2827eqeq1d 2737 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ 𝑦 = (𝑋 + 𝑥)))
2917, 28bitr3d 281 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((((invg𝐺)‘𝑋) + 𝑦) = 𝑥𝑦 = (𝑋 + 𝑥)))
3011, 29bitrid 283 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ 𝑦 = (𝑋 + 𝑥)))
311, 5, 10, 30f1o2d 7687 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  sylow1lem2  19632  sylow2blem1  19653
  Copyright terms: Public domain W3C validator