MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplmulf1o Structured version   Visualization version   GIF version

Theorem grplmulf1o 18928
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b 𝐵 = (Base‘𝐺)
grplmulf1o.p + = (+g𝐺)
grplmulf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
Assertion
Ref Expression
grplmulf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grplmulf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
2 grplmulf1o.b . . . 4 𝐵 = (Base‘𝐺)
3 grplmulf1o.p . . . 4 + = (+g𝐺)
42, 3grpcl 18856 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
543expa 1118 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
6 eqid 2733 . . . 4 (invg𝐺) = (invg𝐺)
72, 6grpinvcl 18902 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
82, 3grpcl 18856 . . . 4 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
983expa 1118 . . 3 (((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
107, 9syldanl 602 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
11 eqcom 2740 . . 3 (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥)
12 simpll 766 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1310adantrl 716 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
14 simprl 770 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
15 simplr 768 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
162, 3grplcan 18915 . . . . 5 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵𝑥𝐵𝑋𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
1712, 13, 14, 15, 16syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
18 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
192, 3, 18, 6grprinv 18905 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2019adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2120oveq1d 7367 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = ((0g𝐺) + 𝑦))
227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
23 simprr 772 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
242, 3, 12, 15, 22, 23grpassd 18860 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
252, 3, 18grplid 18882 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
2625ad2ant2rl 749 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
2721, 24, 263eqtr3d 2776 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = 𝑦)
2827eqeq1d 2735 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ 𝑦 = (𝑋 + 𝑥)))
2917, 28bitr3d 281 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((((invg𝐺)‘𝑋) + 𝑦) = 𝑥𝑦 = (𝑋 + 𝑥)))
3011, 29bitrid 283 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ 𝑦 = (𝑋 + 𝑥)))
311, 5, 10, 30f1o2d 7606 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cmpt 5174  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Grpcgrp 18848  invgcminusg 18849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852
This theorem is referenced by:  sylow1lem2  19513  sylow2blem1  19534
  Copyright terms: Public domain W3C validator