MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplmulf1o Structured version   Visualization version   GIF version

Theorem grplmulf1o 17930
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b 𝐵 = (Base‘𝐺)
grplmulf1o.p + = (+g𝐺)
grplmulf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
Assertion
Ref Expression
grplmulf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grplmulf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
2 grplmulf1o.b . . . 4 𝐵 = (Base‘𝐺)
3 grplmulf1o.p . . . 4 + = (+g𝐺)
42, 3grpcl 17869 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
543expa 1111 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
6 eqid 2795 . . . 4 (invg𝐺) = (invg𝐺)
72, 6grpinvcl 17908 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
82, 3grpcl 17869 . . . 4 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
983expa 1111 . . 3 (((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
107, 9syldanl 601 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
11 eqcom 2802 . . 3 (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥)
12 simpll 763 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1310adantrl 712 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
14 simprl 767 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
15 simplr 765 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
162, 3grplcan 17918 . . . . 5 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵𝑥𝐵𝑋𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
1712, 13, 14, 15, 16syl13anc 1365 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
18 eqid 2795 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
192, 3, 18, 6grprinv 17910 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2019adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2120oveq1d 7031 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = ((0g𝐺) + 𝑦))
227adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
23 simprr 769 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
242, 3grpass 17870 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
2512, 15, 22, 23, 24syl13anc 1365 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
262, 3, 18grplid 17891 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
2726ad2ant2rl 745 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
2821, 25, 273eqtr3d 2839 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = 𝑦)
2928eqeq1d 2797 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ 𝑦 = (𝑋 + 𝑥)))
3017, 29bitr3d 282 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((((invg𝐺)‘𝑋) + 𝑦) = 𝑥𝑦 = (𝑋 + 𝑥)))
3111, 30syl5bb 284 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ 𝑦 = (𝑋 + 𝑥)))
321, 5, 10, 31f1o2d 7257 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  cmpt 5041  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  Basecbs 16312  +gcplusg 16394  0gc0g 16542  Grpcgrp 17861  invgcminusg 17862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865
This theorem is referenced by:  sylow1lem2  18454  sylow2blem1  18475
  Copyright terms: Public domain W3C validator