MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplmulf1o Structured version   Visualization version   GIF version

Theorem grplmulf1o 18942
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b 𝐵 = (Base‘𝐺)
grplmulf1o.p + = (+g𝐺)
grplmulf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
Assertion
Ref Expression
grplmulf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grplmulf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
2 grplmulf1o.b . . . 4 𝐵 = (Base‘𝐺)
3 grplmulf1o.p . . . 4 + = (+g𝐺)
42, 3grpcl 18871 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
543expa 1115 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
6 eqid 2726 . . . 4 (invg𝐺) = (invg𝐺)
72, 6grpinvcl 18917 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
82, 3grpcl 18871 . . . 4 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
983expa 1115 . . 3 (((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
107, 9syldanl 601 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
11 eqcom 2733 . . 3 (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥)
12 simpll 764 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1310adantrl 713 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
14 simprl 768 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
15 simplr 766 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
162, 3grplcan 18930 . . . . 5 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵𝑥𝐵𝑋𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
1712, 13, 14, 15, 16syl13anc 1369 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
18 eqid 2726 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
192, 3, 18, 6grprinv 18920 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2019adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2120oveq1d 7420 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = ((0g𝐺) + 𝑦))
227adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
23 simprr 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
242, 3grpass 18872 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
2512, 15, 22, 23, 24syl13anc 1369 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
262, 3, 18grplid 18897 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
2726ad2ant2rl 746 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
2821, 25, 273eqtr3d 2774 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = 𝑦)
2928eqeq1d 2728 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ 𝑦 = (𝑋 + 𝑥)))
3017, 29bitr3d 281 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((((invg𝐺)‘𝑋) + 𝑦) = 𝑥𝑦 = (𝑋 + 𝑥)))
3111, 30bitrid 283 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ 𝑦 = (𝑋 + 𝑥)))
321, 5, 10, 31f1o2d 7657 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cmpt 5224  1-1-ontowf1o 6536  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  0gc0g 17394  Grpcgrp 18863  invgcminusg 18864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867
This theorem is referenced by:  sylow1lem2  19519  sylow2blem1  19540
  Copyright terms: Public domain W3C validator