Step | Hyp | Ref
| Expression |
1 | | eqvrelth.1 |
. . . . . . . 8
⊢ (𝜑 → EqvRel 𝑅) |
2 | 1 | eqvrelsymb 36646 |
. . . . . . 7
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
3 | 2 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
4 | 1 | eqvreltr 36647 |
. . . . . . 7
⊢ (𝜑 → ((𝐵𝑅𝐴 ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)) |
5 | 4 | impl 455 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥) |
6 | 3, 5 | syldanl 601 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥) |
7 | 1 | eqvreltr 36647 |
. . . . . 6
⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)) |
8 | 7 | impl 455 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥) |
9 | 6, 8 | impbida 797 |
. . . 4
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝑥 ↔ 𝐵𝑅𝑥)) |
10 | | vex 3426 |
. . . . 5
⊢ 𝑥 ∈ V |
11 | | eqvrelth.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
13 | | elecg 8499 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ dom 𝑅) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
14 | 10, 12, 13 | sylancr 586 |
. . . 4
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
15 | | eqvrelrel 36637 |
. . . . . . 7
⊢ ( EqvRel
𝑅 → Rel 𝑅) |
16 | 1, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → Rel 𝑅) |
17 | | brrelex2 5632 |
. . . . . 6
⊢ ((Rel
𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) |
18 | 16, 17 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) |
19 | | elecg 8499 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
20 | 10, 18, 19 | sylancr 586 |
. . . 4
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
21 | 9, 14, 20 | 3bitr4d 310 |
. . 3
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝑥 ∈ [𝐵]𝑅)) |
22 | 21 | eqrdv 2736 |
. 2
⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅) |
23 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → EqvRel 𝑅) |
24 | 1, 11 | eqvrelref 36650 |
. . . . . . 7
⊢ (𝜑 → 𝐴𝑅𝐴) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴) |
26 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ dom 𝑅) |
27 | | elecALTV 36332 |
. . . . . . 7
⊢ ((𝐴 ∈ dom 𝑅 ∧ 𝐴 ∈ dom 𝑅) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
28 | 26, 26, 27 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐴)) |
29 | 25, 28 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅) |
30 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅) |
31 | 29, 30 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅) |
32 | 30 | dmec2d 36368 |
. . . . . 6
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅)) |
33 | 26, 32 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵 ∈ dom 𝑅) |
34 | | elecALTV 36332 |
. . . . 5
⊢ ((𝐵 ∈ dom 𝑅 ∧ 𝐴 ∈ dom 𝑅) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
35 | 33, 26, 34 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
36 | 31, 35 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴) |
37 | 23, 36 | eqvrelsym 36645 |
. 2
⊢ ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵) |
38 | 22, 37 | impbida 797 |
1
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |