Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelth Structured version   Visualization version   GIF version

Theorem eqvrelth 36006
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelth.1 (𝜑 → EqvRel 𝑅)
eqvrelth.2 (𝜑𝐴 ∈ dom 𝑅)
Assertion
Ref Expression
eqvrelth (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem eqvrelth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqvrelth.1 . . . . . . . 8 (𝜑 → EqvRel 𝑅)
21eqvrelsymb 36001 . . . . . . 7 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
32biimpa 480 . . . . . 6 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
41eqvreltr 36002 . . . . . . 7 (𝜑 → ((𝐵𝑅𝐴𝐴𝑅𝑥) → 𝐵𝑅𝑥))
54impl 459 . . . . . 6 (((𝜑𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
63, 5syldanl 604 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
71eqvreltr 36002 . . . . . 6 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝑥) → 𝐴𝑅𝑥))
87impl 459 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)
96, 8impbida 800 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝐴𝑅𝑥𝐵𝑅𝑥))
10 vex 3444 . . . . 5 𝑥 ∈ V
11 eqvrelth.2 . . . . . 6 (𝜑𝐴 ∈ dom 𝑅)
1211adantr 484 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
13 elecg 8315 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ dom 𝑅) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
1410, 12, 13sylancr 590 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
15 eqvrelrel 35992 . . . . . . 7 ( EqvRel 𝑅 → Rel 𝑅)
161, 15syl 17 . . . . . 6 (𝜑 → Rel 𝑅)
17 brrelex2 5570 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
1816, 17sylan 583 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐵 ∈ V)
19 elecg 8315 . . . . 5 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2010, 18, 19sylancr 590 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
219, 14, 203bitr4d 314 . . 3 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
2221eqrdv 2796 . 2 ((𝜑𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅)
231adantr 484 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → EqvRel 𝑅)
241, 11eqvrelref 36005 . . . . . . 7 (𝜑𝐴𝑅𝐴)
2524adantr 484 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴)
2611adantr 484 . . . . . . 7 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ dom 𝑅)
27 elecALTV 35687 . . . . . . 7 ((𝐴 ∈ dom 𝑅𝐴 ∈ dom 𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
2826, 26, 27syl2anc 587 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
2925, 28mpbird 260 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅)
30 simpr 488 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅)
3129, 30eleqtrd 2892 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅)
3230dmec2d 35723 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅))
3326, 32mpbid 235 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵 ∈ dom 𝑅)
34 elecALTV 35687 . . . . 5 ((𝐵 ∈ dom 𝑅𝐴 ∈ dom 𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3533, 26, 34syl2anc 587 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3631, 35mpbid 235 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴)
3723, 36eqvrelsym 36000 . 2 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵)
3822, 37impbida 800 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441   class class class wbr 5030  dom cdm 5519  Rel wrel 5524  [cec 8270   EqvRel weqvrel 35630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ec 8274  df-refrel 35912  df-symrel 35940  df-trrel 35970  df-eqvrel 35980
This theorem is referenced by:  eqvrelthi  36008
  Copyright terms: Public domain W3C validator