Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelth Structured version   Visualization version   GIF version

Theorem eqvrelth 38567
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelth.1 (𝜑 → EqvRel 𝑅)
eqvrelth.2 (𝜑𝐴 ∈ dom 𝑅)
Assertion
Ref Expression
eqvrelth (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem eqvrelth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqvrelth.1 . . . . . . . 8 (𝜑 → EqvRel 𝑅)
21eqvrelsymb 38562 . . . . . . 7 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
32biimpa 476 . . . . . 6 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
41eqvreltr 38563 . . . . . . 7 (𝜑 → ((𝐵𝑅𝐴𝐴𝑅𝑥) → 𝐵𝑅𝑥))
54impl 455 . . . . . 6 (((𝜑𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
63, 5syldanl 601 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
71eqvreltr 38563 . . . . . 6 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝑥) → 𝐴𝑅𝑥))
87impl 455 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)
96, 8impbida 800 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝐴𝑅𝑥𝐵𝑅𝑥))
10 vex 3492 . . . . 5 𝑥 ∈ V
11 eqvrelth.2 . . . . . 6 (𝜑𝐴 ∈ dom 𝑅)
1211adantr 480 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
13 elecg 8807 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ dom 𝑅) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
1410, 12, 13sylancr 586 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
15 eqvrelrel 38553 . . . . . . 7 ( EqvRel 𝑅 → Rel 𝑅)
161, 15syl 17 . . . . . 6 (𝜑 → Rel 𝑅)
17 brrelex2 5754 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
1816, 17sylan 579 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐵 ∈ V)
19 elecg 8807 . . . . 5 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2010, 18, 19sylancr 586 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
219, 14, 203bitr4d 311 . . 3 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
2221eqrdv 2738 . 2 ((𝜑𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅)
231adantr 480 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → EqvRel 𝑅)
241, 11eqvrelref 38566 . . . . . . 7 (𝜑𝐴𝑅𝐴)
2524adantr 480 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴)
2611adantr 480 . . . . . . 7 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ dom 𝑅)
27 elecALTV 38222 . . . . . . 7 ((𝐴 ∈ dom 𝑅𝐴 ∈ dom 𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
2826, 26, 27syl2anc 583 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
2925, 28mpbird 257 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅)
30 simpr 484 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅)
3129, 30eleqtrd 2846 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅)
3230dmec2d 38261 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅))
3326, 32mpbid 232 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵 ∈ dom 𝑅)
34 elecALTV 38222 . . . . 5 ((𝐵 ∈ dom 𝑅𝐴 ∈ dom 𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3533, 26, 34syl2anc 583 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3631, 35mpbid 232 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴)
3723, 36eqvrelsym 38561 . 2 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵)
3822, 37impbida 800 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  dom cdm 5700  Rel wrel 5705  [cec 8761   EqvRel weqvrel 38152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-refrel 38468  df-symrel 38500  df-trrel 38530  df-eqvrel 38541
This theorem is referenced by:  eqvrelthi  38569
  Copyright terms: Public domain W3C validator