Proof of Theorem oeordsuc
Step | Hyp | Ref
| Expression |
1 | | onelon 6238 |
. . . 4
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) |
2 | 1 | ex 416 |
. . 3
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ∈ On)) |
3 | 2 | adantr 484 |
. 2
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → 𝐴 ∈ On)) |
4 | | oewordri 8320 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o 𝐶) ⊆ (𝐵 ↑o 𝐶))) |
5 | 4 | 3adant1 1132 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o 𝐶) ⊆ (𝐵 ↑o 𝐶))) |
6 | | oecl 8264 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o 𝐶) ∈ On) |
7 | 6 | 3adant2 1133 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o 𝐶) ∈ On) |
8 | | oecl 8264 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ↑o 𝐶) ∈ On) |
9 | 8 | 3adant1 1132 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ↑o 𝐶) ∈ On) |
10 | | simp1 1138 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On) |
11 | | omwordri 8300 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ (𝐵 ↑o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ↑o 𝐶) ⊆ (𝐵 ↑o 𝐶) → ((𝐴 ↑o 𝐶) ·o 𝐴) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴))) |
12 | 7, 9, 10, 11 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐶) ⊆ (𝐵 ↑o 𝐶) → ((𝐴 ↑o 𝐶) ·o 𝐴) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴))) |
13 | 5, 12 | syld 47 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ((𝐴 ↑o 𝐶) ·o 𝐴) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴))) |
14 | | oesuc 8254 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o suc 𝐶) = ((𝐴 ↑o 𝐶) ·o 𝐴)) |
15 | 14 | 3adant2 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o suc 𝐶) = ((𝐴 ↑o 𝐶) ·o 𝐴)) |
16 | 15 | sseq1d 3932 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ↔ ((𝐴 ↑o 𝐶) ·o 𝐴) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴))) |
17 | 13, 16 | sylibrd 262 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴))) |
18 | | ne0i 4249 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) |
19 | | on0eln0 6268 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
20 | 18, 19 | syl5ibr 249 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → ∅ ∈ 𝐵)) |
21 | 20 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ∅ ∈ 𝐵)) |
22 | | oen0 8314 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐵) → ∅ ∈
(𝐵 ↑o 𝐶)) |
23 | 22 | ex 416 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
∈ 𝐵 → ∅
∈ (𝐵
↑o 𝐶))) |
24 | 21, 23 | syld 47 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ∅ ∈ (𝐵 ↑o 𝐶))) |
25 | | omordi 8294 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ On ∧ (𝐵 ↑o 𝐶) ∈ On) ∧ ∅
∈ (𝐵
↑o 𝐶))
→ (𝐴 ∈ 𝐵 → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵))) |
26 | 8, 25 | syldanl 605 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
(𝐵 ↑o 𝐶)) → (𝐴 ∈ 𝐵 → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵))) |
27 | 26 | ex 416 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
∈ (𝐵
↑o 𝐶)
→ (𝐴 ∈ 𝐵 → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵)))) |
28 | 27 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (∅ ∈ (𝐵 ↑o 𝐶) → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵)))) |
29 | 24, 28 | mpdd 43 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵))) |
30 | 29 | 3adant1 1132 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵))) |
31 | | oesuc 8254 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ↑o suc 𝐶) = ((𝐵 ↑o 𝐶) ·o 𝐵)) |
32 | 31 | 3adant1 1132 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ↑o suc 𝐶) = ((𝐵 ↑o 𝐶) ·o 𝐵)) |
33 | 32 | eleq2d 2823 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶) ↔ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ ((𝐵 ↑o 𝐶) ·o 𝐵))) |
34 | 30, 33 | sylibrd 262 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶))) |
35 | 17, 34 | jcad 516 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ∧ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶)))) |
36 | 35 | 3expa 1120 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → ((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ∧ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶)))) |
37 | | sucelon 7596 |
. . . . . . 7
⊢ (𝐶 ∈ On ↔ suc 𝐶 ∈ On) |
38 | | oecl 8264 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴 ↑o suc 𝐶) ∈ On) |
39 | | oecl 8264 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ suc 𝐶 ∈ On) → (𝐵 ↑o suc 𝐶) ∈ On) |
40 | | ontr2 6260 |
. . . . . . . . 9
⊢ (((𝐴 ↑o suc 𝐶) ∈ On ∧ (𝐵 ↑o suc 𝐶) ∈ On) → (((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ∧ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶)) → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) |
41 | 38, 39, 40 | syl2an 599 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ suc 𝐶 ∈ On) ∧ (𝐵 ∈ On ∧ suc 𝐶 ∈ On)) → (((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ∧ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶)) → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) |
42 | 41 | anandirs 679 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc 𝐶 ∈ On) → (((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ∧ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶)) → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) |
43 | 37, 42 | sylan2b 597 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴 ↑o suc 𝐶) ⊆ ((𝐵 ↑o 𝐶) ·o 𝐴) ∧ ((𝐵 ↑o 𝐶) ·o 𝐴) ∈ (𝐵 ↑o suc 𝐶)) → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) |
44 | 36, 43 | syld 47 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) |
45 | 44 | exp31 423 |
. . . 4
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ∈ 𝐵 → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))))) |
46 | 45 | com4l 92 |
. . 3
⊢ (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ∈ 𝐵 → (𝐴 ∈ On → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))))) |
47 | 46 | imp 410 |
. 2
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ∈ On → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶)))) |
48 | 3, 47 | mpdd 43 |
1
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) |