MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordsuc Structured version   Visualization version   GIF version

Theorem oeordsuc 8558
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
Assertion
Ref Expression
oeordsuc ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))

Proof of Theorem oeordsuc
StepHypRef Expression
1 onelon 6357 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
21ex 412 . . 3 (𝐵 ∈ On → (𝐴𝐵𝐴 ∈ On))
32adantr 480 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵𝐴 ∈ On))
4 oewordri 8556 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
543adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
6 oecl 8501 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
763adant2 1131 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
8 oecl 8501 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o 𝐶) ∈ On)
983adant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o 𝐶) ∈ On)
10 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On)
11 omwordri 8536 . . . . . . . . . . 11 (((𝐴o 𝐶) ∈ On ∧ (𝐵o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝐶) ⊆ (𝐵o 𝐶) → ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
127, 9, 10, 11syl3anc 1373 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) ⊆ (𝐵o 𝐶) → ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
135, 12syld 47 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
14 oesuc 8491 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
15143adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
1615sseq1d 3978 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ↔ ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
1713, 16sylibrd 259 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
18 ne0i 4304 . . . . . . . . . . . . . 14 (𝐴𝐵𝐵 ≠ ∅)
19 on0eln0 6389 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
2018, 19imbitrrid 246 . . . . . . . . . . . . 13 (𝐵 ∈ On → (𝐴𝐵 → ∅ ∈ 𝐵))
2120adantr 480 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ∅ ∈ 𝐵))
22 oen0 8550 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐵o 𝐶))
2322ex 412 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐵 → ∅ ∈ (𝐵o 𝐶)))
2421, 23syld 47 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ∅ ∈ (𝐵o 𝐶)))
25 omordi 8530 . . . . . . . . . . . . . 14 (((𝐵 ∈ On ∧ (𝐵o 𝐶) ∈ On) ∧ ∅ ∈ (𝐵o 𝐶)) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
268, 25syldanl 602 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ (𝐵o 𝐶)) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
2726ex 412 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵o 𝐶) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵))))
2827com23 86 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (∅ ∈ (𝐵o 𝐶) → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵))))
2924, 28mpdd 43 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
30293adant1 1130 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
31 oesuc 8491 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o suc 𝐶) = ((𝐵o 𝐶) ·o 𝐵))
32313adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o suc 𝐶) = ((𝐵o 𝐶) ·o 𝐵))
3332eleq2d 2814 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶) ↔ ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
3430, 33sylibrd 259 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)))
3517, 34jcad 512 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶))))
36353expa 1118 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶))))
37 onsucb 7792 . . . . . . 7 (𝐶 ∈ On ↔ suc 𝐶 ∈ On)
38 oecl 8501 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴o suc 𝐶) ∈ On)
39 oecl 8501 . . . . . . . . 9 ((𝐵 ∈ On ∧ suc 𝐶 ∈ On) → (𝐵o suc 𝐶) ∈ On)
40 ontr2 6380 . . . . . . . . 9 (((𝐴o suc 𝐶) ∈ On ∧ (𝐵o suc 𝐶) ∈ On) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4138, 39, 40syl2an 596 . . . . . . . 8 (((𝐴 ∈ On ∧ suc 𝐶 ∈ On) ∧ (𝐵 ∈ On ∧ suc 𝐶 ∈ On)) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4241anandirs 679 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc 𝐶 ∈ On) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4337, 42sylan2b 594 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4436, 43syld 47 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4544exp31 419 . . . 4 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))))
4645com4l 92 . . 3 (𝐵 ∈ On → (𝐶 ∈ On → (𝐴𝐵 → (𝐴 ∈ On → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))))
4746imp 406 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ∈ On → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶))))
483, 47mpdd 43 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3914  c0 4296  Oncon0 6332  suc csuc 6334  (class class class)co 7387   ·o comu 8432  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator