MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordsuc Structured version   Visualization version   GIF version

Theorem oeordsuc 8650
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
Assertion
Ref Expression
oeordsuc ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))

Proof of Theorem oeordsuc
StepHypRef Expression
1 onelon 6420 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
21ex 412 . . 3 (𝐵 ∈ On → (𝐴𝐵𝐴 ∈ On))
32adantr 480 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵𝐴 ∈ On))
4 oewordri 8648 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
543adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
6 oecl 8593 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
763adant2 1131 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
8 oecl 8593 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o 𝐶) ∈ On)
983adant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o 𝐶) ∈ On)
10 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On)
11 omwordri 8628 . . . . . . . . . . 11 (((𝐴o 𝐶) ∈ On ∧ (𝐵o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝐶) ⊆ (𝐵o 𝐶) → ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
127, 9, 10, 11syl3anc 1371 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐶) ⊆ (𝐵o 𝐶) → ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
135, 12syld 47 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
14 oesuc 8583 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
15143adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
1615sseq1d 4040 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ↔ ((𝐴o 𝐶) ·o 𝐴) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
1713, 16sylibrd 259 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴)))
18 ne0i 4364 . . . . . . . . . . . . . 14 (𝐴𝐵𝐵 ≠ ∅)
19 on0eln0 6451 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
2018, 19imbitrrid 246 . . . . . . . . . . . . 13 (𝐵 ∈ On → (𝐴𝐵 → ∅ ∈ 𝐵))
2120adantr 480 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ∅ ∈ 𝐵))
22 oen0 8642 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐵o 𝐶))
2322ex 412 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐵 → ∅ ∈ (𝐵o 𝐶)))
2421, 23syld 47 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ∅ ∈ (𝐵o 𝐶)))
25 omordi 8622 . . . . . . . . . . . . . 14 (((𝐵 ∈ On ∧ (𝐵o 𝐶) ∈ On) ∧ ∅ ∈ (𝐵o 𝐶)) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
268, 25syldanl 601 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ (𝐵o 𝐶)) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
2726ex 412 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵o 𝐶) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵))))
2827com23 86 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (∅ ∈ (𝐵o 𝐶) → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵))))
2924, 28mpdd 43 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
30293adant1 1130 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
31 oesuc 8583 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o suc 𝐶) = ((𝐵o 𝐶) ·o 𝐵))
32313adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵o suc 𝐶) = ((𝐵o 𝐶) ·o 𝐵))
3332eleq2d 2830 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶) ↔ ((𝐵o 𝐶) ·o 𝐴) ∈ ((𝐵o 𝐶) ·o 𝐵)))
3430, 33sylibrd 259 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)))
3517, 34jcad 512 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶))))
36353expa 1118 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴𝐵 → ((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶))))
37 onsucb 7853 . . . . . . 7 (𝐶 ∈ On ↔ suc 𝐶 ∈ On)
38 oecl 8593 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴o suc 𝐶) ∈ On)
39 oecl 8593 . . . . . . . . 9 ((𝐵 ∈ On ∧ suc 𝐶 ∈ On) → (𝐵o suc 𝐶) ∈ On)
40 ontr2 6442 . . . . . . . . 9 (((𝐴o suc 𝐶) ∈ On ∧ (𝐵o suc 𝐶) ∈ On) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4138, 39, 40syl2an 595 . . . . . . . 8 (((𝐴 ∈ On ∧ suc 𝐶 ∈ On) ∧ (𝐵 ∈ On ∧ suc 𝐶 ∈ On)) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4241anandirs 678 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ suc 𝐶 ∈ On) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4337, 42sylan2b 593 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (((𝐴o suc 𝐶) ⊆ ((𝐵o 𝐶) ·o 𝐴) ∧ ((𝐵o 𝐶) ·o 𝐴) ∈ (𝐵o suc 𝐶)) → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4436, 43syld 47 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
4544exp31 419 . . . 4 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))))
4645com4l 92 . . 3 (𝐵 ∈ On → (𝐶 ∈ On → (𝐴𝐵 → (𝐴 ∈ On → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))))
4746imp 406 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ∈ On → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶))))
483, 47mpdd 43 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o suc 𝐶) ∈ (𝐵o suc 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976  c0 4352  Oncon0 6395  suc csuc 6397  (class class class)co 7448   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator