Proof of Theorem vonicclem1
Step | Hyp | Ref
| Expression |
1 | | vonicclem1.s |
. . . 4
⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛)))) |
3 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
4 | | vonicclem1.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
5 | 4 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
6 | | vonicclem1.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ Fin) |
7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢ dom
(voln‘𝑋) = dom
(voln‘𝑋) |
9 | | vonicclem1.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
10 | 9 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ) |
11 | | vonicclem1.b |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
12 | 11 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
13 | 12 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
14 | | nnrecre 12015 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
15 | 14 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℝ) |
16 | 13, 15 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
17 | 16 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ) |
18 | | vonicclem1.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
19 | 18 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))))) |
20 | 6 | mptexd 7100 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) ∈ V) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))) ∈ V) |
22 | 19, 21 | fvmpt2d 6888 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
23 | 22 | feq1d 6585 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐶‘𝑛):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛))):𝑋⟶ℝ)) |
24 | 17, 23 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ) |
25 | 7, 8, 10, 24 | hoimbl 44169 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) ∈ dom (voln‘𝑋)) |
26 | 25 | elexd 3452 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) ∈ V) |
27 | 5, 26 | fvmpt2d 6888 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
28 | 3, 27 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) |
29 | 28 | fveq2d 6778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
30 | | vonicclem1.u |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≠ ∅) |
31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ≠ ∅) |
32 | 3, 24 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘𝑛):𝑋⟶ℝ) |
33 | | eqid 2738 |
. . . . . . 7
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)) |
34 | 7, 31, 10, 32, 33 | vonn0hoi 44208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘)))) |
35 | 10 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
36 | 3, 35 | syldanl 602 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
37 | 32 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) ∈ ℝ) |
38 | | volico 43524 |
. . . . . . . . 9
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ ((𝐶‘𝑛)‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = if((𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘), (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)), 0)) |
39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = if((𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘), (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)), 0)) |
40 | 3, 13 | syldanl 602 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
41 | | vonicclem1.t |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
42 | 41 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
43 | | nnrp 12741 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
44 | 43 | rpreccld 12782 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
45 | 44 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈
ℝ+) |
46 | 40, 45 | ltaddrpd 12805 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) < ((𝐵‘𝑘) + (1 / 𝑛))) |
47 | 16 | elexd 3452 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) + (1 / 𝑛)) ∈ V) |
48 | 22, 47 | fvmpt2d 6888 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) = ((𝐵‘𝑘) + (1 / 𝑛))) |
49 | 3, 48 | syldanl 602 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑛)‘𝑘) = ((𝐵‘𝑘) + (1 / 𝑛))) |
50 | 46, 49 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) < ((𝐶‘𝑛)‘𝑘)) |
51 | 36, 40, 37, 42, 50 | lelttrd 11133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘)) |
52 | 51 | iftrued 4467 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) < ((𝐶‘𝑛)‘𝑘), (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)), 0) = (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
53 | 39, 52 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
54 | 53 | prodeq2dv 15633 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) = ∏𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
55 | 29, 34, 54 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) = ∏𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘))) |
56 | 48 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)) = (((𝐵‘𝑘) + (1 / 𝑛)) − (𝐴‘𝑘))) |
57 | 13 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℂ) |
58 | 15 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1 / 𝑛) ∈ ℂ) |
59 | 35 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℂ) |
60 | 57, 58, 59 | addsubd 11353 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐵‘𝑘) + (1 / 𝑛)) − (𝐴‘𝑘)) = (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
61 | 56, 60 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)) = (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
62 | 61 | prodeq2dv 15633 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
63 | 55, 62 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln‘𝑋)‘(𝐷‘𝑛)) = ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
64 | 63 | mpteq2dva 5174 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛)))) |
65 | 2, 64 | eqtrd 2778 |
. 2
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛)))) |
66 | | nfv 1917 |
. . 3
⊢
Ⅎ𝑘𝜑 |
67 | 9 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
68 | 12, 67 | resubcld 11403 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℝ) |
69 | 68 | recnd 11003 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℂ) |
70 | | eqid 2738 |
. . 3
⊢ (𝑛 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) |
71 | 66, 6, 69, 70 | fprodaddrecnncnv 43451 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (((𝐵‘𝑘) − (𝐴‘𝑘)) + (1 / 𝑛))) ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
72 | 65, 71 | eqbrtrd 5096 |
1
⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |