Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicclem1 Structured version   Visualization version   GIF version

Theorem vonicclem1 45976
Description: The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicclem1.x (πœ‘ β†’ 𝑋 ∈ Fin)
vonicclem1.a (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)
vonicclem1.b (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)
vonicclem1.u (πœ‘ β†’ 𝑋 β‰  βˆ…)
vonicclem1.t ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ≀ (π΅β€˜π‘˜))
vonicclem1.c 𝐢 = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))))
vonicclem1.d 𝐷 = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)))
vonicclem1.s 𝑆 = (𝑛 ∈ β„• ↦ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)))
Assertion
Ref Expression
vonicclem1 (πœ‘ β†’ 𝑆 ⇝ βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
Distinct variable groups:   𝐴,π‘˜,𝑛   𝐡,𝑛   𝐢,π‘˜   π‘˜,𝑋,𝑛   πœ‘,π‘˜,𝑛
Allowed substitution hints:   𝐡(π‘˜)   𝐢(𝑛)   𝐷(π‘˜,𝑛)   𝑆(π‘˜,𝑛)

Proof of Theorem vonicclem1
StepHypRef Expression
1 vonicclem1.s . . . 4 𝑆 = (𝑛 ∈ β„• ↦ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)))
21a1i 11 . . 3 (πœ‘ β†’ 𝑆 = (𝑛 ∈ β„• ↦ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›))))
3 simpr 484 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„•)
4 vonicclem1.d . . . . . . . . . 10 𝐷 = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)))
54a1i 11 . . . . . . . . 9 (πœ‘ β†’ 𝐷 = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))))
6 vonicclem1.x . . . . . . . . . . . 12 (πœ‘ β†’ 𝑋 ∈ Fin)
76adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑋 ∈ Fin)
8 eqid 2726 . . . . . . . . . . 11 dom (volnβ€˜π‘‹) = dom (volnβ€˜π‘‹)
9 vonicclem1.a . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)
109adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐴:π‘‹βŸΆβ„)
11 vonicclem1.b . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)
1211ffvelcdmda 7080 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΅β€˜π‘˜) ∈ ℝ)
1312adantlr 712 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΅β€˜π‘˜) ∈ ℝ)
14 nnrecre 12258 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„• β†’ (1 / 𝑛) ∈ ℝ)
1514ad2antlr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (1 / 𝑛) ∈ ℝ)
1613, 15readdcld 11247 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ ((π΅β€˜π‘˜) + (1 / 𝑛)) ∈ ℝ)
1716fmpttd 7110 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))):π‘‹βŸΆβ„)
18 vonicclem1.c . . . . . . . . . . . . . . 15 𝐢 = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))))
1918a1i 11 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐢 = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛)))))
206mptexd 7221 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))) ∈ V)
2120adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))) ∈ V)
2219, 21fvmpt2d 7005 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΆβ€˜π‘›) = (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))))
2322feq1d 6696 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((πΆβ€˜π‘›):π‘‹βŸΆβ„ ↔ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))):π‘‹βŸΆβ„))
2417, 23mpbird 257 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΆβ€˜π‘›):π‘‹βŸΆβ„)
257, 8, 10, 24hoimbl 45924 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)) ∈ dom (volnβ€˜π‘‹))
2625elexd 3489 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)) ∈ V)
275, 26fvmpt2d 7005 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π·β€˜π‘›) = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)))
283, 27syldan 590 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π·β€˜π‘›) = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)))
2928fveq2d 6889 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)) = ((volnβ€˜π‘‹)β€˜Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))))
30 vonicclem1.u . . . . . . . 8 (πœ‘ β†’ 𝑋 β‰  βˆ…)
3130adantr 480 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑋 β‰  βˆ…)
323, 24syldan 590 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΆβ€˜π‘›):π‘‹βŸΆβ„)
33 eqid 2726 . . . . . . 7 Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)) = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))
347, 31, 10, 32, 33vonn0hoi 45963 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((volnβ€˜π‘‹)β€˜Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))) = βˆπ‘˜ ∈ 𝑋 (volβ€˜((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))))
3510ffvelcdmda 7080 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ∈ ℝ)
363, 35syldanl 601 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ∈ ℝ)
3732ffvelcdmda 7080 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ ((πΆβ€˜π‘›)β€˜π‘˜) ∈ ℝ)
38 volico 45276 . . . . . . . . 9 (((π΄β€˜π‘˜) ∈ ℝ ∧ ((πΆβ€˜π‘›)β€˜π‘˜) ∈ ℝ) β†’ (volβ€˜((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))) = if((π΄β€˜π‘˜) < ((πΆβ€˜π‘›)β€˜π‘˜), (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)), 0))
3936, 37, 38syl2anc 583 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (volβ€˜((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))) = if((π΄β€˜π‘˜) < ((πΆβ€˜π‘›)β€˜π‘˜), (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)), 0))
403, 13syldanl 601 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΅β€˜π‘˜) ∈ ℝ)
41 vonicclem1.t . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ≀ (π΅β€˜π‘˜))
4241adantlr 712 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ≀ (π΅β€˜π‘˜))
43 nnrp 12991 . . . . . . . . . . . . . 14 (𝑛 ∈ β„• β†’ 𝑛 ∈ ℝ+)
4443rpreccld 13032 . . . . . . . . . . . . 13 (𝑛 ∈ β„• β†’ (1 / 𝑛) ∈ ℝ+)
4544ad2antlr 724 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (1 / 𝑛) ∈ ℝ+)
4640, 45ltaddrpd 13055 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΅β€˜π‘˜) < ((π΅β€˜π‘˜) + (1 / 𝑛)))
4716elexd 3489 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ ((π΅β€˜π‘˜) + (1 / 𝑛)) ∈ V)
4822, 47fvmpt2d 7005 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ ((πΆβ€˜π‘›)β€˜π‘˜) = ((π΅β€˜π‘˜) + (1 / 𝑛)))
493, 48syldanl 601 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ ((πΆβ€˜π‘›)β€˜π‘˜) = ((π΅β€˜π‘˜) + (1 / 𝑛)))
5046, 49breqtrrd 5169 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΅β€˜π‘˜) < ((πΆβ€˜π‘›)β€˜π‘˜))
5136, 40, 37, 42, 50lelttrd 11376 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) < ((πΆβ€˜π‘›)β€˜π‘˜))
5251iftrued 4531 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ if((π΄β€˜π‘˜) < ((πΆβ€˜π‘›)β€˜π‘˜), (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)), 0) = (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
5339, 52eqtrd 2766 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (volβ€˜((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))) = (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
5453prodeq2dv 15873 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ βˆπ‘˜ ∈ 𝑋 (volβ€˜((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜))) = βˆπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
5529, 34, 543eqtrd 2770 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)) = βˆπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
5648oveq1d 7420 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) = (((π΅β€˜π‘˜) + (1 / 𝑛)) βˆ’ (π΄β€˜π‘˜)))
5713recnd 11246 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΅β€˜π‘˜) ∈ β„‚)
5815recnd 11246 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (1 / 𝑛) ∈ β„‚)
5935recnd 11246 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ∈ β„‚)
6057, 58, 59addsubd 11596 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (((π΅β€˜π‘˜) + (1 / 𝑛)) βˆ’ (π΄β€˜π‘˜)) = (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛)))
6156, 60eqtrd 2766 . . . . . 6 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘˜ ∈ 𝑋) β†’ (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) = (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛)))
6261prodeq2dv 15873 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ βˆπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘›)β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) = βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛)))
6355, 62eqtrd 2766 . . . 4 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)) = βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛)))
6463mpteq2dva 5241 . . 3 (πœ‘ β†’ (𝑛 ∈ β„• ↦ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›))) = (𝑛 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛))))
652, 64eqtrd 2766 . 2 (πœ‘ β†’ 𝑆 = (𝑛 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛))))
66 nfv 1909 . . 3 β„²π‘˜πœ‘
679ffvelcdmda 7080 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ∈ ℝ)
6812, 67resubcld 11646 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) ∈ ℝ)
6968recnd 11246 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) ∈ β„‚)
70 eqid 2726 . . 3 (𝑛 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛))) = (𝑛 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛)))
7166, 6, 69, 70fprodaddrecnncnv 45203 . 2 (πœ‘ β†’ (𝑛 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)) + (1 / 𝑛))) ⇝ βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
7265, 71eqbrtrd 5163 1 (πœ‘ β†’ 𝑆 ⇝ βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  Vcvv 3468  βˆ…c0 4317  ifcif 4523   class class class wbr 5141   ↦ cmpt 5224  dom cdm 5669  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  Xcixp 8893  Fincfn 8941  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252   ≀ cle 11253   βˆ’ cmin 11448   / cdiv 11875  β„•cn 12216  β„+crp 12980  [,)cico 13332   ⇝ cli 15434  βˆcprod 15855  volcvol 25347  volncvoln 45831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cc 10432  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-tpos 8212  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-omul 8472  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-acn 9939  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-rlim 15439  df-sum 15639  df-prod 15856  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-grp 18866  df-minusg 18867  df-mulg 18996  df-subg 19050  df-cntz 19233  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-cring 20141  df-oppr 20236  df-dvdsr 20259  df-unit 20260  df-invr 20290  df-dvr 20303  df-drng 20589  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cn 23086  df-cnp 23087  df-cmp 23246  df-tx 23421  df-hmeo 23614  df-xms 24181  df-ms 24182  df-tms 24183  df-cncf 24753  df-ovol 25348  df-vol 25349  df-salg 45602  df-sumge0 45656  df-mea 45743  df-ome 45783  df-caragen 45785  df-ovoln 45830  df-voln 45832
This theorem is referenced by:  vonicclem2  45977
  Copyright terms: Public domain W3C validator