![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlnegcl | Structured version Visualization version GIF version |
Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idlnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idlnegcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
idlnegcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlnegcl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2726 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
3 | 1, 2 | idlss 37717 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran 𝐺) |
4 | ssel2 3974 | . . . . 5 ⊢ ((𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) | |
5 | eqid 2726 | . . . . . 6 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
6 | idlnegcl.2 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
7 | eqid 2726 | . . . . . 6 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
8 | 1, 5, 2, 6, 7 | rngonegmn1l 37642 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
9 | 4, 8 | sylan2 591 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼)) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
10 | 9 | anassrs 466 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran 𝐺) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
11 | 3, 10 | syldanl 600 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
12 | 1 | rneqi 5943 | . . . . . 6 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
13 | 12, 5, 7 | rngo1cl 37640 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) |
14 | 1, 2, 6 | rngonegcl 37628 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
15 | 13, 14 | mpdan 685 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
16 | 15 | ad2antrr 724 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
17 | 1, 5, 2 | idllmulcl 37721 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺)) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
18 | 17 | anassrs 466 | . . 3 ⊢ ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
19 | 16, 18 | mpdan 685 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
20 | 11, 19 | eqeltrd 2826 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ran crn 5683 ‘cfv 6554 (class class class)co 7424 1st c1st 8001 2nd c2nd 8002 GIdcgi 30423 invcgn 30424 RingOpscrngo 37595 Idlcidl 37708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-1st 8003 df-2nd 8004 df-grpo 30426 df-gid 30427 df-ginv 30428 df-ablo 30478 df-ass 37544 df-exid 37546 df-mgmOLD 37550 df-sgrOLD 37562 df-mndo 37568 df-rngo 37596 df-idl 37711 |
This theorem is referenced by: idlsubcl 37724 |
Copyright terms: Public domain | W3C validator |