| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlnegcl | Structured version Visualization version GIF version | ||
| Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| idlnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| idlnegcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| idlnegcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlnegcl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | 1, 2 | idlss 37998 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran 𝐺) |
| 4 | ssel2 3932 | . . . . 5 ⊢ ((𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 6 | idlnegcl.2 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
| 8 | 1, 5, 2, 6, 7 | rngonegmn1l 37923 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
| 9 | 4, 8 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼)) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
| 10 | 9 | anassrs 467 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran 𝐺) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
| 11 | 3, 10 | syldanl 602 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
| 12 | 1 | rneqi 5883 | . . . . . 6 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 13 | 12, 5, 7 | rngo1cl 37921 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) |
| 14 | 1, 2, 6 | rngonegcl 37909 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
| 15 | 13, 14 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
| 16 | 15 | ad2antrr 726 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
| 17 | 1, 5, 2 | idllmulcl 38002 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺)) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
| 18 | 17 | anassrs 467 | . . 3 ⊢ ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
| 19 | 16, 18 | mpdan 687 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
| 20 | 11, 19 | eqeltrd 2828 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ran crn 5624 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 GIdcgi 30452 invcgn 30453 RingOpscrngo 37876 Idlcidl 37989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-1st 7931 df-2nd 7932 df-grpo 30455 df-gid 30456 df-ginv 30457 df-ablo 30507 df-ass 37825 df-exid 37827 df-mgmOLD 37831 df-sgrOLD 37843 df-mndo 37849 df-rngo 37877 df-idl 37992 |
| This theorem is referenced by: idlsubcl 38005 |
| Copyright terms: Public domain | W3C validator |