Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlnegcl Structured version   Visualization version   GIF version

Theorem idlnegcl 36336
Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlnegcl.1 𝐺 = (1st𝑅)
idlnegcl.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
idlnegcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → (𝑁𝐴) ∈ 𝐼)

Proof of Theorem idlnegcl
StepHypRef Expression
1 idlnegcl.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2736 . . . 4 ran 𝐺 = ran 𝐺
31, 2idlss 36330 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran 𝐺)
4 ssel2 3927 . . . . 5 ((𝐼 ⊆ ran 𝐺𝐴𝐼) → 𝐴 ∈ ran 𝐺)
5 eqid 2736 . . . . . 6 (2nd𝑅) = (2nd𝑅)
6 idlnegcl.2 . . . . . 6 𝑁 = (inv‘𝐺)
7 eqid 2736 . . . . . 6 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
81, 5, 2, 6, 7rngonegmn1l 36255 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) → (𝑁𝐴) = ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴))
94, 8sylan2 593 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran 𝐺𝐴𝐼)) → (𝑁𝐴) = ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴))
109anassrs 468 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran 𝐺) ∧ 𝐴𝐼) → (𝑁𝐴) = ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴))
113, 10syldanl 602 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → (𝑁𝐴) = ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴))
121rneqi 5879 . . . . . 6 ran 𝐺 = ran (1st𝑅)
1312, 5, 7rngo1cl 36253 . . . . 5 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran 𝐺)
141, 2, 6rngonegcl 36241 . . . . 5 ((𝑅 ∈ RingOps ∧ (GId‘(2nd𝑅)) ∈ ran 𝐺) → (𝑁‘(GId‘(2nd𝑅))) ∈ ran 𝐺)
1513, 14mpdan 684 . . . 4 (𝑅 ∈ RingOps → (𝑁‘(GId‘(2nd𝑅))) ∈ ran 𝐺)
1615ad2antrr 723 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → (𝑁‘(GId‘(2nd𝑅))) ∈ ran 𝐺)
171, 5, 2idllmulcl 36334 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼 ∧ (𝑁‘(GId‘(2nd𝑅))) ∈ ran 𝐺)) → ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴) ∈ 𝐼)
1817anassrs 468 . . 3 ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) ∧ (𝑁‘(GId‘(2nd𝑅))) ∈ ran 𝐺) → ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴) ∈ 𝐼)
1916, 18mpdan 684 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → ((𝑁‘(GId‘(2nd𝑅)))(2nd𝑅)𝐴) ∈ 𝐼)
2011, 19eqeltrd 2837 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴𝐼) → (𝑁𝐴) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3898  ran crn 5622  cfv 6480  (class class class)co 7338  1st c1st 7898  2nd c2nd 7899  GIdcgi 29141  invcgn 29142  RingOpscrngo 36208  Idlcidl 36321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-1st 7900  df-2nd 7901  df-grpo 29144  df-gid 29145  df-ginv 29146  df-ablo 29196  df-ass 36157  df-exid 36159  df-mgmOLD 36163  df-sgrOLD 36175  df-mndo 36181  df-rngo 36209  df-idl 36324
This theorem is referenced by:  idlsubcl  36337
  Copyright terms: Public domain W3C validator