Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlnegcl | Structured version Visualization version GIF version |
Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idlnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idlnegcl.2 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
idlnegcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlnegcl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
3 | 1, 2 | idlss 36174 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran 𝐺) |
4 | ssel2 3916 | . . . . 5 ⊢ ((𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) | |
5 | eqid 2738 | . . . . . 6 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
6 | idlnegcl.2 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
7 | eqid 2738 | . . . . . 6 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
8 | 1, 5, 2, 6, 7 | rngonegmn1l 36099 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
9 | 4, 8 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼)) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
10 | 9 | anassrs 468 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran 𝐺) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
11 | 3, 10 | syldanl 602 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) |
12 | 1 | rneqi 5846 | . . . . . 6 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
13 | 12, 5, 7 | rngo1cl 36097 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) |
14 | 1, 2, 6 | rngonegcl 36085 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
15 | 13, 14 | mpdan 684 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
16 | 15 | ad2antrr 723 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) |
17 | 1, 5, 2 | idllmulcl 36178 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺)) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
18 | 17 | anassrs 468 | . . 3 ⊢ ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
19 | 16, 18 | mpdan 684 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) |
20 | 11, 19 | eqeltrd 2839 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ran crn 5590 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 GIdcgi 28852 invcgn 28853 RingOpscrngo 36052 Idlcidl 36165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ginv 28857 df-ablo 28907 df-ass 36001 df-exid 36003 df-mgmOLD 36007 df-sgrOLD 36019 df-mndo 36025 df-rngo 36053 df-idl 36168 |
This theorem is referenced by: idlsubcl 36181 |
Copyright terms: Public domain | W3C validator |