Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlnegcl Structured version   Visualization version   GIF version

Theorem idlnegcl 37403
Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlnegcl.1 𝐺 = (1st β€˜π‘…)
idlnegcl.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
idlnegcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) ∈ 𝐼)

Proof of Theorem idlnegcl
StepHypRef Expression
1 idlnegcl.1 . . . 4 𝐺 = (1st β€˜π‘…)
2 eqid 2726 . . . 4 ran 𝐺 = ran 𝐺
31, 2idlss 37397 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) β†’ 𝐼 βŠ† ran 𝐺)
4 ssel2 3972 . . . . 5 ((𝐼 βŠ† ran 𝐺 ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 ∈ ran 𝐺)
5 eqid 2726 . . . . . 6 (2nd β€˜π‘…) = (2nd β€˜π‘…)
6 idlnegcl.2 . . . . . 6 𝑁 = (invβ€˜πΊ)
7 eqid 2726 . . . . . 6 (GIdβ€˜(2nd β€˜π‘…)) = (GIdβ€˜(2nd β€˜π‘…))
81, 5, 2, 6, 7rngonegmn1l 37322 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
94, 8sylan2 592 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐼 βŠ† ran 𝐺 ∧ 𝐴 ∈ 𝐼)) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
109anassrs 467 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 βŠ† ran 𝐺) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
113, 10syldanl 601 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
121rneqi 5930 . . . . . 6 ran 𝐺 = ran (1st β€˜π‘…)
1312, 5, 7rngo1cl 37320 . . . . 5 (𝑅 ∈ RingOps β†’ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran 𝐺)
141, 2, 6rngonegcl 37308 . . . . 5 ((𝑅 ∈ RingOps ∧ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran 𝐺) β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
1513, 14mpdan 684 . . . 4 (𝑅 ∈ RingOps β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
1615ad2antrr 723 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
171, 5, 2idllmulcl 37401 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
1817anassrs 467 . . 3 ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) ∧ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
1916, 18mpdan 684 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
2011, 19eqeltrd 2827 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  ran crn 5670  β€˜cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  GIdcgi 30252  invcgn 30253  RingOpscrngo 37275  Idlcidl 37388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-1st 7974  df-2nd 7975  df-grpo 30255  df-gid 30256  df-ginv 30257  df-ablo 30307  df-ass 37224  df-exid 37226  df-mgmOLD 37230  df-sgrOLD 37242  df-mndo 37248  df-rngo 37276  df-idl 37391
This theorem is referenced by:  idlsubcl  37404
  Copyright terms: Public domain W3C validator