Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlnegcl Structured version   Visualization version   GIF version

Theorem idlnegcl 37528
Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlnegcl.1 𝐺 = (1st β€˜π‘…)
idlnegcl.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
idlnegcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) ∈ 𝐼)

Proof of Theorem idlnegcl
StepHypRef Expression
1 idlnegcl.1 . . . 4 𝐺 = (1st β€˜π‘…)
2 eqid 2728 . . . 4 ran 𝐺 = ran 𝐺
31, 2idlss 37522 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) β†’ 𝐼 βŠ† ran 𝐺)
4 ssel2 3977 . . . . 5 ((𝐼 βŠ† ran 𝐺 ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 ∈ ran 𝐺)
5 eqid 2728 . . . . . 6 (2nd β€˜π‘…) = (2nd β€˜π‘…)
6 idlnegcl.2 . . . . . 6 𝑁 = (invβ€˜πΊ)
7 eqid 2728 . . . . . 6 (GIdβ€˜(2nd β€˜π‘…)) = (GIdβ€˜(2nd β€˜π‘…))
81, 5, 2, 6, 7rngonegmn1l 37447 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
94, 8sylan2 591 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐼 βŠ† ran 𝐺 ∧ 𝐴 ∈ 𝐼)) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
109anassrs 466 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 βŠ† ran 𝐺) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
113, 10syldanl 600 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
121rneqi 5943 . . . . . 6 ran 𝐺 = ran (1st β€˜π‘…)
1312, 5, 7rngo1cl 37445 . . . . 5 (𝑅 ∈ RingOps β†’ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran 𝐺)
141, 2, 6rngonegcl 37433 . . . . 5 ((𝑅 ∈ RingOps ∧ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran 𝐺) β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
1513, 14mpdan 685 . . . 4 (𝑅 ∈ RingOps β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
1615ad2antrr 724 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
171, 5, 2idllmulcl 37526 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
1817anassrs 466 . . 3 ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) ∧ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
1916, 18mpdan 685 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
2011, 19eqeltrd 2829 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   βŠ† wss 3949  ran crn 5683  β€˜cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  GIdcgi 30320  invcgn 30321  RingOpscrngo 37400  Idlcidl 37513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-1st 7999  df-2nd 8000  df-grpo 30323  df-gid 30324  df-ginv 30325  df-ablo 30375  df-ass 37349  df-exid 37351  df-mgmOLD 37355  df-sgrOLD 37367  df-mndo 37373  df-rngo 37401  df-idl 37516
This theorem is referenced by:  idlsubcl  37529
  Copyright terms: Public domain W3C validator