Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlnegcl Structured version   Visualization version   GIF version

Theorem idlnegcl 36890
Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlnegcl.1 𝐺 = (1st β€˜π‘…)
idlnegcl.2 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
idlnegcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) ∈ 𝐼)

Proof of Theorem idlnegcl
StepHypRef Expression
1 idlnegcl.1 . . . 4 𝐺 = (1st β€˜π‘…)
2 eqid 2733 . . . 4 ran 𝐺 = ran 𝐺
31, 2idlss 36884 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) β†’ 𝐼 βŠ† ran 𝐺)
4 ssel2 3978 . . . . 5 ((𝐼 βŠ† ran 𝐺 ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 ∈ ran 𝐺)
5 eqid 2733 . . . . . 6 (2nd β€˜π‘…) = (2nd β€˜π‘…)
6 idlnegcl.2 . . . . . 6 𝑁 = (invβ€˜πΊ)
7 eqid 2733 . . . . . 6 (GIdβ€˜(2nd β€˜π‘…)) = (GIdβ€˜(2nd β€˜π‘…))
81, 5, 2, 6, 7rngonegmn1l 36809 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
94, 8sylan2 594 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐼 βŠ† ran 𝐺 ∧ 𝐴 ∈ 𝐼)) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
109anassrs 469 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 βŠ† ran 𝐺) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
113, 10syldanl 603 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) = ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴))
121rneqi 5937 . . . . . 6 ran 𝐺 = ran (1st β€˜π‘…)
1312, 5, 7rngo1cl 36807 . . . . 5 (𝑅 ∈ RingOps β†’ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran 𝐺)
141, 2, 6rngonegcl 36795 . . . . 5 ((𝑅 ∈ RingOps ∧ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran 𝐺) β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
1513, 14mpdan 686 . . . 4 (𝑅 ∈ RingOps β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
1615ad2antrr 725 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)
171, 5, 2idllmulcl 36888 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ (𝐴 ∈ 𝐼 ∧ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺)) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
1817anassrs 469 . . 3 ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) ∧ (π‘β€˜(GIdβ€˜(2nd β€˜π‘…))) ∈ ran 𝐺) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
1916, 18mpdan 686 . 2 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ ((π‘β€˜(GIdβ€˜(2nd β€˜π‘…)))(2nd β€˜π‘…)𝐴) ∈ 𝐼)
2011, 19eqeltrd 2834 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idlβ€˜π‘…)) ∧ 𝐴 ∈ 𝐼) β†’ (π‘β€˜π΄) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949  ran crn 5678  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  GIdcgi 29743  invcgn 29744  RingOpscrngo 36762  Idlcidl 36875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-1st 7975  df-2nd 7976  df-grpo 29746  df-gid 29747  df-ginv 29748  df-ablo 29798  df-ass 36711  df-exid 36713  df-mgmOLD 36717  df-sgrOLD 36729  df-mndo 36735  df-rngo 36763  df-idl 36878
This theorem is referenced by:  idlsubcl  36891
  Copyright terms: Public domain W3C validator