|   | Mathbox for Jeff Madsen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlnegcl | Structured version Visualization version GIF version | ||
| Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) | 
| Ref | Expression | 
|---|---|
| idlnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) | 
| idlnegcl.2 | ⊢ 𝑁 = (inv‘𝐺) | 
| Ref | Expression | 
|---|---|
| idlnegcl | ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idlnegcl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2736 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | 1, 2 | idlss 38024 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran 𝐺) | 
| 4 | ssel2 3977 | . . . . 5 ⊢ ((𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ ran 𝐺) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 6 | idlnegcl.2 | . . . . . 6 ⊢ 𝑁 = (inv‘𝐺) | |
| 7 | eqid 2736 | . . . . . 6 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
| 8 | 1, 5, 2, 6, 7 | rngonegmn1l 37949 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ ran 𝐺) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) | 
| 9 | 4, 8 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran 𝐺 ∧ 𝐴 ∈ 𝐼)) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) | 
| 10 | 9 | anassrs 467 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran 𝐺) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) | 
| 11 | 3, 10 | syldanl 602 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) = ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴)) | 
| 12 | 1 | rneqi 5947 | . . . . . 6 ⊢ ran 𝐺 = ran (1st ‘𝑅) | 
| 13 | 12, 5, 7 | rngo1cl 37947 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) | 
| 14 | 1, 2, 6 | rngonegcl 37935 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (GId‘(2nd ‘𝑅)) ∈ ran 𝐺) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) | 
| 15 | 13, 14 | mpdan 687 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) | 
| 16 | 15 | ad2antrr 726 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) | 
| 17 | 1, 5, 2 | idllmulcl 38028 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺)) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) | 
| 18 | 17 | anassrs 467 | . . 3 ⊢ ((((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) ∧ (𝑁‘(GId‘(2nd ‘𝑅))) ∈ ran 𝐺) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) | 
| 19 | 16, 18 | mpdan 687 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → ((𝑁‘(GId‘(2nd ‘𝑅)))(2nd ‘𝑅)𝐴) ∈ 𝐼) | 
| 20 | 11, 19 | eqeltrd 2840 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ran crn 5685 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 2nd c2nd 8014 GIdcgi 30510 invcgn 30511 RingOpscrngo 37902 Idlcidl 38015 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-1st 8015 df-2nd 8016 df-grpo 30513 df-gid 30514 df-ginv 30515 df-ablo 30565 df-ass 37851 df-exid 37853 df-mgmOLD 37857 df-sgrOLD 37869 df-mndo 37875 df-rngo 37903 df-idl 38018 | 
| This theorem is referenced by: idlsubcl 38031 | 
| Copyright terms: Public domain | W3C validator |