Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenmin | Structured version Visualization version GIF version |
Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenmin | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2736 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | idlss 36272 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
4 | sstr 3939 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐼 ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → 𝑆 ⊆ ran (1st ‘𝑅)) | |
5 | 4 | ancoms 459 | . . . . . 6 ⊢ ((𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼) → 𝑆 ⊆ ran (1st ‘𝑅)) |
6 | 1, 2 | igenval 36317 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
8 | 7 | anassrs 468 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
9 | 3, 8 | syldanl 602 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
10 | 9 | 3impa 1109 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
11 | sseq2 3957 | . . . 4 ⊢ (𝑗 = 𝐼 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝐼)) | |
12 | 11 | intminss 4919 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
13 | 12 | 3adant1 1129 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
14 | 10, 13 | eqsstrd 3969 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3403 ⊆ wss 3897 ∩ cint 4893 ran crn 5615 ‘cfv 6473 (class class class)co 7329 1st c1st 7889 RingOpscrngo 36150 Idlcidl 36263 IdlGen cigen 36315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fo 6479 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-grpo 29084 df-gid 29085 df-ablo 29136 df-rngo 36151 df-idl 36266 df-igen 36316 |
This theorem is referenced by: igenval2 36322 |
Copyright terms: Public domain | W3C validator |