Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenmin Structured version   Visualization version   GIF version

Theorem igenmin 38110
Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenmin ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)

Proof of Theorem igenmin
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (1st𝑅) = (1st𝑅)
2 eqid 2731 . . . . 5 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 38062 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
4 sstr 3943 . . . . . . 7 ((𝑆𝐼𝐼 ⊆ ran (1st𝑅)) → 𝑆 ⊆ ran (1st𝑅))
54ancoms 458 . . . . . 6 ((𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼) → 𝑆 ⊆ ran (1st𝑅))
61, 2igenval 38107 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
75, 6sylan2 593 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
87anassrs 467 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
93, 8syldanl 602 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
1093impa 1109 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
11 sseq2 3961 . . . 4 (𝑗 = 𝐼 → (𝑆𝑗𝑆𝐼))
1211intminss 4924 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
13123adant1 1130 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
1410, 13eqsstrd 3969 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  wss 3902   cint 4897  ran crn 5617  cfv 6481  (class class class)co 7346  1st c1st 7919  RingOpscrngo 37940  Idlcidl 38053   IdlGen cigen 38105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grpo 30471  df-gid 30472  df-ablo 30523  df-rngo 37941  df-idl 38056  df-igen 38106
This theorem is referenced by:  igenval2  38112
  Copyright terms: Public domain W3C validator