Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenmin Structured version   Visualization version   GIF version

Theorem igenmin 35341
Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenmin ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)

Proof of Theorem igenmin
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 (1st𝑅) = (1st𝑅)
2 eqid 2821 . . . . 5 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 35293 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
4 sstr 3974 . . . . . . 7 ((𝑆𝐼𝐼 ⊆ ran (1st𝑅)) → 𝑆 ⊆ ran (1st𝑅))
54ancoms 461 . . . . . 6 ((𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼) → 𝑆 ⊆ ran (1st𝑅))
61, 2igenval 35338 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
75, 6sylan2 594 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
87anassrs 470 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
93, 8syldanl 603 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
1093impa 1106 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
11 sseq2 3992 . . . 4 (𝑗 = 𝐼 → (𝑆𝑗𝑆𝐼))
1211intminss 4901 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
13123adant1 1126 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
1410, 13eqsstrd 4004 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  wss 3935   cint 4875  ran crn 5555  cfv 6354  (class class class)co 7155  1st c1st 7686  RingOpscrngo 35171  Idlcidl 35284   IdlGen cigen 35336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fo 6360  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-grpo 28269  df-gid 28270  df-ablo 28321  df-rngo 35172  df-idl 35287  df-igen 35337
This theorem is referenced by:  igenval2  35343
  Copyright terms: Public domain W3C validator