Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenmin Structured version   Visualization version   GIF version

Theorem igenmin 38024
Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenmin ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)

Proof of Theorem igenmin
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (1st𝑅) = (1st𝑅)
2 eqid 2740 . . . . 5 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 37976 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
4 sstr 4017 . . . . . . 7 ((𝑆𝐼𝐼 ⊆ ran (1st𝑅)) → 𝑆 ⊆ ran (1st𝑅))
54ancoms 458 . . . . . 6 ((𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼) → 𝑆 ⊆ ran (1st𝑅))
61, 2igenval 38021 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
75, 6sylan2 592 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
87anassrs 467 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
93, 8syldanl 601 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
1093impa 1110 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
11 sseq2 4035 . . . 4 (𝑗 = 𝐼 → (𝑆𝑗𝑆𝐼))
1211intminss 4998 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
13123adant1 1130 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
1410, 13eqsstrd 4047 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976   cint 4970  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  RingOpscrngo 37854  Idlcidl 37967   IdlGen cigen 38019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ablo 30577  df-rngo 37855  df-idl 37970  df-igen 38020
This theorem is referenced by:  igenval2  38026
  Copyright terms: Public domain W3C validator