| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenmin | Structured version Visualization version GIF version | ||
| Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| igenmin | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 3 | 1, 2 | idlss 37998 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
| 4 | sstr 3946 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐼 ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → 𝑆 ⊆ ran (1st ‘𝑅)) | |
| 5 | 4 | ancoms 458 | . . . . . 6 ⊢ ((𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼) → 𝑆 ⊆ ran (1st ‘𝑅)) |
| 6 | 1, 2 | igenval 38043 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 8 | 7 | anassrs 467 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 9 | 3, 8 | syldanl 602 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 10 | 9 | 3impa 1109 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 11 | sseq2 3964 | . . . 4 ⊢ (𝑗 = 𝐼 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝐼)) | |
| 12 | 11 | intminss 4927 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
| 14 | 10, 13 | eqsstrd 3972 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∩ cint 4899 ran crn 5624 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 RingOpscrngo 37876 Idlcidl 37989 IdlGen cigen 38041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-grpo 30455 df-gid 30456 df-ablo 30507 df-rngo 37877 df-idl 37992 df-igen 38042 |
| This theorem is referenced by: igenval2 38048 |
| Copyright terms: Public domain | W3C validator |