Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenmin | Structured version Visualization version GIF version |
Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenmin | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2738 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | idlss 36174 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
4 | sstr 3929 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐼 ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → 𝑆 ⊆ ran (1st ‘𝑅)) | |
5 | 4 | ancoms 459 | . . . . . 6 ⊢ ((𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼) → 𝑆 ⊆ ran (1st ‘𝑅)) |
6 | 1, 2 | igenval 36219 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
8 | 7 | anassrs 468 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
9 | 3, 8 | syldanl 602 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
10 | 9 | 3impa 1109 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
11 | sseq2 3947 | . . . 4 ⊢ (𝑗 = 𝐼 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝐼)) | |
12 | 11 | intminss 4905 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
13 | 12 | 3adant1 1129 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
14 | 10, 13 | eqsstrd 3959 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∩ cint 4879 ran crn 5590 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 RingOpscrngo 36052 Idlcidl 36165 IdlGen cigen 36217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ablo 28907 df-rngo 36053 df-idl 36168 df-igen 36218 |
This theorem is referenced by: igenval2 36224 |
Copyright terms: Public domain | W3C validator |