Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenmin Structured version   Visualization version   GIF version

Theorem igenmin 36320
Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
igenmin ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)

Proof of Theorem igenmin
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (1st𝑅) = (1st𝑅)
2 eqid 2736 . . . . 5 ran (1st𝑅) = ran (1st𝑅)
31, 2idlss 36272 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st𝑅))
4 sstr 3939 . . . . . . 7 ((𝑆𝐼𝐼 ⊆ ran (1st𝑅)) → 𝑆 ⊆ ran (1st𝑅))
54ancoms 459 . . . . . 6 ((𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼) → 𝑆 ⊆ ran (1st𝑅))
61, 2igenval 36317 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st𝑅)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
75, 6sylan2 593 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st𝑅) ∧ 𝑆𝐼)) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
87anassrs 468 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
93, 8syldanl 602 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
1093impa 1109 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
11 sseq2 3957 . . . 4 (𝑗 = 𝐼 → (𝑆𝑗𝑆𝐼))
1211intminss 4919 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
13123adant1 1129 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ 𝐼)
1410, 13eqsstrd 3969 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  {crab 3403  wss 3897   cint 4893  ran crn 5615  cfv 6473  (class class class)co 7329  1st c1st 7889  RingOpscrngo 36150  Idlcidl 36263   IdlGen cigen 36315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-fo 6479  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-grpo 29084  df-gid 29085  df-ablo 29136  df-rngo 36151  df-idl 36266  df-igen 36316
This theorem is referenced by:  igenval2  36322
  Copyright terms: Public domain W3C validator