| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenmin | Structured version Visualization version GIF version | ||
| Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| igenmin | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2735 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 3 | 1, 2 | idlss 37986 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ ran (1st ‘𝑅)) |
| 4 | sstr 3967 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐼 ∧ 𝐼 ⊆ ran (1st ‘𝑅)) → 𝑆 ⊆ ran (1st ‘𝑅)) | |
| 5 | 4 | ancoms 458 | . . . . . 6 ⊢ ((𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼) → 𝑆 ⊆ ran (1st ‘𝑅)) |
| 6 | 1, 2 | igenval 38031 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran (1st ‘𝑅)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 7 | 5, 6 | sylan2 593 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ (𝐼 ⊆ ran (1st ‘𝑅) ∧ 𝑆 ⊆ 𝐼)) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 8 | 7 | anassrs 467 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran (1st ‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 9 | 3, 8 | syldanl 602 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 10 | 9 | 3impa 1109 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 11 | sseq2 3985 | . . . 4 ⊢ (𝑗 = 𝐼 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝐼)) | |
| 12 | 11 | intminss 4950 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ 𝐼) |
| 14 | 10, 13 | eqsstrd 3993 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∩ cint 4922 ran crn 5655 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 RingOpscrngo 37864 Idlcidl 37977 IdlGen cigen 38029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-grpo 30420 df-gid 30421 df-ablo 30472 df-rngo 37865 df-idl 37980 df-igen 38030 |
| This theorem is referenced by: igenval2 38036 |
| Copyright terms: Public domain | W3C validator |