MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem2 Structured version   Visualization version   GIF version

Theorem phplem2 9219
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5335. (Revised by BTernaryTau, 4-Nov-2024.)
Hypothesis
Ref Expression
phplem2.1 𝐴 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8969 . 2 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
2 f1of1 6817 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
3 nnfi 9181 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ Fin)
4 sssucid 6434 . . . . . . . . . 10 𝐴 ⊆ suc 𝐴
5 f1imaenfi 9209 . . . . . . . . . 10 ((𝑓:suc 𝐴1-1→suc 𝐵𝐴 ⊆ suc 𝐴𝐴 ∈ Fin) → (𝑓𝐴) ≈ 𝐴)
64, 5mp3an2 1451 . . . . . . . . 9 ((𝑓:suc 𝐴1-1→suc 𝐵𝐴 ∈ Fin) → (𝑓𝐴) ≈ 𝐴)
72, 3, 6syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
8 ensymfib 9198 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
93, 8syl 17 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
117, 10mpbird 257 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
12 nnord 7869 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
13 orddif 6450 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1412, 13syl 17 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1514imaeq2d 6047 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
16 f1ofn 6819 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
17 phplem2.1 . . . . . . . . . . . 12 𝐴 ∈ V
1817sucid 6436 . . . . . . . . . . 11 𝐴 ∈ suc 𝐴
19 fnsnfv 6958 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2016, 18, 19sylancl 586 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2120difeq2d 4101 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
22 imadmrn 6057 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
2322eqcomi 2744 . . . . . . . . . . 11 ran 𝑓 = (𝑓 “ dom 𝑓)
24 f1ofo 6825 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
25 forn 6793 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
2624, 25syl 17 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
27 f1odm 6822 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
2827imaeq2d 6047 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
2923, 26, 283eqtr3a 2794 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3029difeq1d 4100 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
31 dff1o3 6824 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
32 imadif 6620 . . . . . . . . . 10 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3331, 32simplbiim 504 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3421, 30, 333eqtr4rd 2781 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3515, 34sylan9eq 2790 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3611, 35breqtrd 5145 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
37 fnfvelrn 7070 . . . . . . . . . . . 12 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
3816, 18, 37sylancl 586 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ ran 𝑓)
3925eleq2d 2820 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4024, 39syl 17 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4138, 40mpbid 232 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ suc 𝐵)
42 phplem1 9218 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
4341, 42sylan2 593 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
44 nnfi 9181 . . . . . . . . . . 11 (𝐵 ∈ ω → 𝐵 ∈ Fin)
45 ensymfib 9198 . . . . . . . . . . 11 (𝐵 ∈ Fin → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4644, 45syl 17 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4746adantr 480 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4843, 47mpbid 232 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
49 entrfil 9199 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
503, 49syl3an1 1163 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5148, 50syl3an3 1165 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
52513expa 1118 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)})) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
5336, 52syldanl 602 . . . . 5 (((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
5453anandirs 679 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
5554ex 412 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
5655exlimdv 1933 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
571, 56biimtrid 242 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  Ord word 6351  suc csuc 6354  Fun wfun 6525   Fn wfn 6526  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  ωcom 7861  cen 8956  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963
This theorem is referenced by:  nneneq  9220
  Copyright terms: Public domain W3C validator