MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem2 Structured version   Visualization version   GIF version

Theorem phplem2 8893
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem2
StepHypRef Expression
1 snex 5349 . . . . . 6 {⟨𝐵, 𝐴⟩} ∈ V
2 phplem2.2 . . . . . . 7 𝐵 ∈ V
3 phplem2.1 . . . . . . 7 𝐴 ∈ V
42, 3f1osn 6739 . . . . . 6 {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}
5 f1oen3g 8709 . . . . . 6 (({⟨𝐵, 𝐴⟩} ∈ V ∧ {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}) → {𝐵} ≈ {𝐴})
61, 4, 5mp2an 688 . . . . 5 {𝐵} ≈ {𝐴}
73difexi 5247 . . . . . 6 (𝐴 ∖ {𝐵}) ∈ V
87enref 8728 . . . . 5 (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})
96, 8pm3.2i 470 . . . 4 ({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵}))
10 incom 4131 . . . . . 6 ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∩ {𝐴})
11 difss 4062 . . . . . . . . 9 (𝐴 ∖ {𝐵}) ⊆ 𝐴
12 ssrin 4164 . . . . . . . . 9 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴}))
1311, 12ax-mp 5 . . . . . . . 8 ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴})
14 nnord 7695 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
15 orddisj 6289 . . . . . . . . 9 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1614, 15syl 17 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
1713, 16sseqtrid 3969 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅)
18 ss0 4329 . . . . . . 7 (((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅ → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
1917, 18syl 17 . . . . . 6 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
2010, 19eqtrid 2790 . . . . 5 (𝐴 ∈ ω → ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)
21 disjdif 4402 . . . . 5 ({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅
2220, 21jctil 519 . . . 4 (𝐴 ∈ ω → (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅))
23 unen 8790 . . . 4 ((({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) ∧ (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
249, 22, 23sylancr 586 . . 3 (𝐴 ∈ ω → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
2524adantr 480 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
26 uncom 4083 . . . 4 ({𝐵} ∪ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
27 difsnid 4740 . . . 4 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
2826, 27eqtrid 2790 . . 3 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
2928adantl 481 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
30 phplem1 8892 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
3125, 29, 303brtr3d 5101 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  Ord word 6250  suc csuc 6253  1-1-ontowf1o 6417  ωcom 7687  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-om 7688  df-en 8692
This theorem is referenced by:  phplem3  8894
  Copyright terms: Public domain W3C validator