MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem2 Structured version   Visualization version   GIF version

Theorem phplem2 9204
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5362. (Revised by BTernaryTau, 4-Nov-2024.)
Hypothesis
Ref Expression
phplem2.1 𝐴 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8945 . 2 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
2 f1of1 6829 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
3 nnfi 9163 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ Fin)
4 sssucid 6441 . . . . . . . . . 10 𝐴 ⊆ suc 𝐴
5 f1imaenfi 9194 . . . . . . . . . 10 ((𝑓:suc 𝐴1-1→suc 𝐵𝐴 ⊆ suc 𝐴𝐴 ∈ Fin) → (𝑓𝐴) ≈ 𝐴)
64, 5mp3an2 1449 . . . . . . . . 9 ((𝑓:suc 𝐴1-1→suc 𝐵𝐴 ∈ Fin) → (𝑓𝐴) ≈ 𝐴)
72, 3, 6syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
8 ensymfib 9183 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
93, 8syl 17 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
109adantr 481 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
117, 10mpbird 256 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
12 nnord 7859 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
13 orddif 6457 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1412, 13syl 17 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1514imaeq2d 6057 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
16 f1ofn 6831 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
17 phplem2.1 . . . . . . . . . . . 12 𝐴 ∈ V
1817sucid 6443 . . . . . . . . . . 11 𝐴 ∈ suc 𝐴
19 fnsnfv 6967 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2016, 18, 19sylancl 586 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2120difeq2d 4121 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
22 imadmrn 6067 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
2322eqcomi 2741 . . . . . . . . . . 11 ran 𝑓 = (𝑓 “ dom 𝑓)
24 f1ofo 6837 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
25 forn 6805 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
2624, 25syl 17 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
27 f1odm 6834 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
2827imaeq2d 6057 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
2923, 26, 283eqtr3a 2796 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3029difeq1d 4120 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
31 dff1o3 6836 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
32 imadif 6629 . . . . . . . . . 10 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3331, 32simplbiim 505 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3421, 30, 333eqtr4rd 2783 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3515, 34sylan9eq 2792 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3611, 35breqtrd 5173 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
37 fnfvelrn 7079 . . . . . . . . . . . 12 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
3816, 18, 37sylancl 586 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ ran 𝑓)
3925eleq2d 2819 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4024, 39syl 17 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4138, 40mpbid 231 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ suc 𝐵)
42 phplem1 9203 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
4341, 42sylan2 593 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
44 nnfi 9163 . . . . . . . . . . 11 (𝐵 ∈ ω → 𝐵 ∈ Fin)
45 ensymfib 9183 . . . . . . . . . . 11 (𝐵 ∈ Fin → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4644, 45syl 17 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4746adantr 481 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4843, 47mpbid 231 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
49 entrfil 9184 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
503, 49syl3an1 1163 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5148, 50syl3an3 1165 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
52513expa 1118 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)})) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
5336, 52syldanl 602 . . . . 5 (((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
5453anandirs 677 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
5554ex 413 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
5655exlimdv 1936 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
571, 56biimtrid 241 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  cdif 3944  wss 3947  {csn 4627   class class class wbr 5147  ccnv 5674  dom cdm 5675  ran crn 5676  cima 5678  Ord word 6360  suc csuc 6363  Fun wfun 6534   Fn wfn 6535  1-1wf1 6537  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  ωcom 7851  cen 8932  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-fin 8939
This theorem is referenced by:  nneneq  9205
  Copyright terms: Public domain W3C validator