MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem2 Structured version   Visualization version   GIF version

Theorem phplem2 8428
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1 𝐴 ∈ V
phplem2.2 𝐵 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem2
StepHypRef Expression
1 snex 5140 . . . . . 6 {⟨𝐵, 𝐴⟩} ∈ V
2 phplem2.2 . . . . . . 7 𝐵 ∈ V
3 phplem2.1 . . . . . . 7 𝐴 ∈ V
42, 3f1osn 6430 . . . . . 6 {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}
5 f1oen3g 8257 . . . . . 6 (({⟨𝐵, 𝐴⟩} ∈ V ∧ {⟨𝐵, 𝐴⟩}:{𝐵}–1-1-onto→{𝐴}) → {𝐵} ≈ {𝐴})
61, 4, 5mp2an 682 . . . . 5 {𝐵} ≈ {𝐴}
73difexi 5046 . . . . . 6 (𝐴 ∖ {𝐵}) ∈ V
87enref 8274 . . . . 5 (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})
96, 8pm3.2i 464 . . . 4 ({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵}))
10 incom 4028 . . . . . 6 ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∩ {𝐴})
11 difss 3960 . . . . . . . . 9 (𝐴 ∖ {𝐵}) ⊆ 𝐴
12 ssrin 4058 . . . . . . . . 9 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴}))
1311, 12ax-mp 5 . . . . . . . 8 ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴})
14 nnord 7351 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
15 orddisj 6014 . . . . . . . . 9 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1614, 15syl 17 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
1713, 16syl5sseq 3872 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅)
18 ss0 4200 . . . . . . 7 (((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅ → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
1917, 18syl 17 . . . . . 6 (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅)
2010, 19syl5eq 2826 . . . . 5 (𝐴 ∈ ω → ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)
21 disjdif 4264 . . . . 5 ({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅
2220, 21jctil 515 . . . 4 (𝐴 ∈ ω → (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅))
23 unen 8328 . . . 4 ((({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) ∧ (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
249, 22, 23sylancr 581 . . 3 (𝐴 ∈ ω → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
2524adantr 474 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵})))
26 uncom 3980 . . . 4 ({𝐵} ∪ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
27 difsnid 4572 . . . 4 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
2826, 27syl5eq 2826 . . 3 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
2928adantl 475 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴)
30 phplem1 8427 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
3125, 29, 303brtr3d 4917 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789  cun 3790  cin 3791  wss 3792  c0 4141  {csn 4398  cop 4404   class class class wbr 4886  Ord word 5975  suc csuc 5978  1-1-ontowf1o 6134  ωcom 7343  cen 8238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-om 7344  df-en 8242
This theorem is referenced by:  phplem3  8429
  Copyright terms: Public domain W3C validator