MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem2 Structured version   Visualization version   GIF version

Theorem phplem2 9129
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Nov-2024.)
Hypothesis
Ref Expression
phplem2.1 𝐴 ∈ V
Assertion
Ref Expression
phplem2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8889 . 2 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
2 f1of1 6767 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
3 nnfi 9091 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ Fin)
4 sssucid 6393 . . . . . . . . . 10 𝐴 ⊆ suc 𝐴
5 f1imaenfi 9119 . . . . . . . . . 10 ((𝑓:suc 𝐴1-1→suc 𝐵𝐴 ⊆ suc 𝐴𝐴 ∈ Fin) → (𝑓𝐴) ≈ 𝐴)
64, 5mp3an2 1451 . . . . . . . . 9 ((𝑓:suc 𝐴1-1→suc 𝐵𝐴 ∈ Fin) → (𝑓𝐴) ≈ 𝐴)
72, 3, 6syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
8 ensymfib 9108 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
93, 8syl 17 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝐴 ≈ (𝑓𝐴) ↔ (𝑓𝐴) ≈ 𝐴))
117, 10mpbird 257 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
12 nnord 7814 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
13 orddif 6409 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1412, 13syl 17 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1514imaeq2d 6015 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
16 f1ofn 6769 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
17 phplem2.1 . . . . . . . . . . . 12 𝐴 ∈ V
1817sucid 6395 . . . . . . . . . . 11 𝐴 ∈ suc 𝐴
19 fnsnfv 6906 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2016, 18, 19sylancl 586 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2120difeq2d 4079 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
22 imadmrn 6025 . . . . . . . . . . . 12 (𝑓 “ dom 𝑓) = ran 𝑓
2322eqcomi 2738 . . . . . . . . . . 11 ran 𝑓 = (𝑓 “ dom 𝑓)
24 f1ofo 6775 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
25 forn 6743 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
2624, 25syl 17 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
27 f1odm 6772 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
2827imaeq2d 6015 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
2923, 26, 283eqtr3a 2788 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3029difeq1d 4078 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
31 dff1o3 6774 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
32 imadif 6570 . . . . . . . . . 10 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3331, 32simplbiim 504 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3421, 30, 333eqtr4rd 2775 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3515, 34sylan9eq 2784 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
3611, 35breqtrd 5121 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
37 fnfvelrn 7018 . . . . . . . . . . . 12 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
3816, 18, 37sylancl 586 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ ran 𝑓)
3925eleq2d 2814 . . . . . . . . . . . 12 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4024, 39syl 17 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
4138, 40mpbid 232 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓𝐴) ∈ suc 𝐵)
42 phplem1 9128 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
4341, 42sylan2 593 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
44 nnfi 9091 . . . . . . . . . . 11 (𝐵 ∈ ω → 𝐵 ∈ Fin)
45 ensymfib 9108 . . . . . . . . . . 11 (𝐵 ∈ Fin → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4644, 45syl 17 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4746adantr 480 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ↔ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵))
4843, 47mpbid 232 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
49 entrfil 9109 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
503, 49syl3an1 1163 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5148, 50syl3an3 1165 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
52513expa 1118 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)})) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
5336, 52syldanl 602 . . . . 5 (((𝐴 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) ∧ (𝐵 ∈ ω ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵)) → 𝐴𝐵)
5453anandirs 679 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
5554ex 412 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
5655exlimdv 1933 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵𝐴𝐵))
571, 56biimtrid 242 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626  Ord word 6310  suc csuc 6313  Fun wfun 6480   Fn wfn 6481  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  ωcom 7806  cen 8876  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-en 8880  df-fin 8883
This theorem is referenced by:  nneneq  9130
  Copyright terms: Public domain W3C validator