Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) |
2 | | grplact.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
3 | | grplact.3 |
. . . . 5
⊢ + =
(+g‘𝐺) |
4 | 2, 3 | grpcl 18220 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋) → (𝐴 + 𝑎) ∈ 𝑋) |
5 | 4 | 3expa 1119 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑎 ∈ 𝑋) → (𝐴 + 𝑎) ∈ 𝑋) |
6 | | grplactcnv.4 |
. . . . 5
⊢ 𝐼 = (invg‘𝐺) |
7 | 2, 6 | grpinvcl 18262 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
8 | 2, 3 | grpcl 18220 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝐼‘𝐴) + 𝑏) ∈ 𝑋) |
9 | 8 | 3expa 1119 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (𝐼‘𝐴) ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → ((𝐼‘𝐴) + 𝑏) ∈ 𝑋) |
10 | 7, 9 | syldanl 605 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → ((𝐼‘𝐴) + 𝑏) ∈ 𝑋) |
11 | | eqcom 2745 |
. . . . 5
⊢ (𝑎 = ((𝐼‘𝐴) + 𝑏) ↔ ((𝐼‘𝐴) + 𝑏) = 𝑎) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
13 | 2, 3, 12, 6 | grplinv 18263 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐼‘𝐴) + 𝐴) = (0g‘𝐺)) |
14 | 13 | adantr 484 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐼‘𝐴) + 𝐴) = (0g‘𝐺)) |
15 | 14 | oveq1d 7179 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝐴) + 𝑎) = ((0g‘𝐺) + 𝑎)) |
16 | | simpll 767 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐺 ∈ Grp) |
17 | 7 | adantr 484 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐼‘𝐴) ∈ 𝑋) |
18 | | simplr 769 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
19 | | simprl 771 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ 𝑋) |
20 | 2, 3 | grpass 18221 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ ((𝐼‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝐴) + 𝑎) = ((𝐼‘𝐴) + (𝐴 + 𝑎))) |
21 | 16, 17, 18, 19, 20 | syl13anc 1373 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝐴) + 𝑎) = ((𝐼‘𝐴) + (𝐴 + 𝑎))) |
22 | 2, 3, 12 | grplid 18244 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋) → ((0g‘𝐺) + 𝑎) = 𝑎) |
23 | 22 | ad2ant2r 747 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((0g‘𝐺) + 𝑎) = 𝑎) |
24 | 15, 21, 23 | 3eqtr3rd 2782 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 = ((𝐼‘𝐴) + (𝐴 + 𝑎))) |
25 | 24 | eqeq2d 2749 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝑏) = 𝑎 ↔ ((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)))) |
26 | 11, 25 | syl5bb 286 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 = ((𝐼‘𝐴) + 𝑏) ↔ ((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)))) |
27 | | simprr 773 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
28 | 5 | adantrr 717 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐴 + 𝑎) ∈ 𝑋) |
29 | 2, 3 | grplcan 18272 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑏 ∈ 𝑋 ∧ (𝐴 + 𝑎) ∈ 𝑋 ∧ (𝐼‘𝐴) ∈ 𝑋)) → (((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎))) |
30 | 16, 27, 28, 17, 29 | syl13anc 1373 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎))) |
31 | 26, 30 | bitrd 282 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 = ((𝐼‘𝐴) + 𝑏) ↔ 𝑏 = (𝐴 + 𝑎))) |
32 | 1, 5, 10, 31 | f1ocnv2d 7408 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)):𝑋–1-1-onto→𝑋 ∧ ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏)))) |
33 | | grplact.1 |
. . . . . 6
⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
34 | 33, 2 | grplactfval 18311 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
35 | 34 | adantl 485 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
36 | 35 | f1oeq1d 6607 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ↔ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)):𝑋–1-1-onto→𝑋)) |
37 | 35 | cnveqd 5712 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡(𝐹‘𝐴) = ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
38 | 33, 2 | grplactfval 18311 |
. . . . . 6
⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝐹‘(𝐼‘𝐴)) = (𝑎 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑎))) |
39 | | oveq2 7172 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → ((𝐼‘𝐴) + 𝑎) = ((𝐼‘𝐴) + 𝑏)) |
40 | 39 | cbvmptv 5130 |
. . . . . 6
⊢ (𝑎 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏)) |
41 | 38, 40 | eqtrdi 2789 |
. . . . 5
⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝐹‘(𝐼‘𝐴)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏))) |
42 | 7, 41 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘(𝐼‘𝐴)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏))) |
43 | 37, 42 | eqeq12d 2754 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)) ↔ ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏)))) |
44 | 36, 43 | anbi12d 634 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴))) ↔ ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)):𝑋–1-1-onto→𝑋 ∧ ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏))))) |
45 | 32, 44 | mpbird 260 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)))) |