Step | Hyp | Ref
| Expression |
1 | | restsspw 16764 |
. . . 4
⊢ (𝑈 ↾t (𝐴 × 𝐴)) ⊆ 𝒫 (𝐴 × 𝐴) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ⊆ 𝒫 (𝐴 × 𝐴)) |
3 | | inxp 5673 |
. . . . . 6
⊢ ((𝑋 × 𝑋) ∩ (𝐴 × 𝐴)) = ((𝑋 ∩ 𝐴) × (𝑋 ∩ 𝐴)) |
4 | | sseqin2 4121 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) |
5 | 4 | biimpi 219 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑋 → (𝑋 ∩ 𝐴) = 𝐴) |
6 | 5 | sqxpeqd 5557 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 → ((𝑋 ∩ 𝐴) × (𝑋 ∩ 𝐴)) = (𝐴 × 𝐴)) |
7 | 3, 6 | syl5eq 2806 |
. . . . 5
⊢ (𝐴 ⊆ 𝑋 → ((𝑋 × 𝑋) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
8 | 7 | adantl 486 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝑋 × 𝑋) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
9 | | simpl 487 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑈 ∈ (UnifOn‘𝑋)) |
10 | | elfvex 6692 |
. . . . . . . 8
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) |
11 | 10 | adantr 485 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
12 | | simpr 489 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) |
13 | 11, 12 | ssexd 5195 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 13, 13 | xpexd 7473 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ∈ V) |
15 | | ustbasel 22908 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) |
16 | 15 | adantr 485 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 × 𝑋) ∈ 𝑈) |
17 | | elrestr 16761 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ (𝑋 × 𝑋) ∈ 𝑈) → ((𝑋 × 𝑋) ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
18 | 9, 14, 16, 17 | syl3anc 1369 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝑋 × 𝑋) ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
19 | 8, 18 | eqeltrrd 2854 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
20 | 9 | ad5antr 734 |
. . . . . . . . 9
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋)) |
21 | 14 | ad5antr 734 |
. . . . . . . . 9
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V) |
22 | | simplr 769 |
. . . . . . . . . . 11
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑢 ∈ 𝑈) |
23 | | simp-4r 784 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) |
24 | 23 | elpwid 4506 |
. . . . . . . . . . . . 13
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑤 ⊆ (𝐴 × 𝐴)) |
25 | 12 | ad5antr 734 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝐴 ⊆ 𝑋) |
26 | | xpss12 5540 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
27 | 25, 25, 26 | syl2anc 588 |
. . . . . . . . . . . . 13
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
28 | 24, 27 | sstrd 3903 |
. . . . . . . . . . . 12
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑤 ⊆ (𝑋 × 𝑋)) |
29 | | ustssxp 22906 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → 𝑢 ⊆ (𝑋 × 𝑋)) |
30 | 20, 22, 29 | syl2anc 588 |
. . . . . . . . . . . 12
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑢 ⊆ (𝑋 × 𝑋)) |
31 | 28, 30 | unssd 4092 |
. . . . . . . . . . 11
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝑤 ∪ 𝑢) ⊆ (𝑋 × 𝑋)) |
32 | | ssun2 4079 |
. . . . . . . . . . . 12
⊢ 𝑢 ⊆ (𝑤 ∪ 𝑢) |
33 | | ustssel 22907 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈 ∧ (𝑤 ∪ 𝑢) ⊆ (𝑋 × 𝑋)) → (𝑢 ⊆ (𝑤 ∪ 𝑢) → (𝑤 ∪ 𝑢) ∈ 𝑈)) |
34 | 32, 33 | mpi 20 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈 ∧ (𝑤 ∪ 𝑢) ⊆ (𝑋 × 𝑋)) → (𝑤 ∪ 𝑢) ∈ 𝑈) |
35 | 20, 22, 31, 34 | syl3anc 1369 |
. . . . . . . . . 10
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝑤 ∪ 𝑢) ∈ 𝑈) |
36 | | df-ss 3876 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ⊆ (𝐴 × 𝐴) ↔ (𝑤 ∩ (𝐴 × 𝐴)) = 𝑤) |
37 | 24, 36 | sylib 221 |
. . . . . . . . . . . . 13
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝑤 ∩ (𝐴 × 𝐴)) = 𝑤) |
38 | 37 | uneq1d 4068 |
. . . . . . . . . . . 12
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ((𝑤 ∩ (𝐴 × 𝐴)) ∪ (𝑢 ∩ (𝐴 × 𝐴))) = (𝑤 ∪ (𝑢 ∩ (𝐴 × 𝐴)))) |
39 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
40 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑣 ⊆ 𝑤) |
41 | 39, 40 | eqsstrrd 3932 |
. . . . . . . . . . . . 13
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑤) |
42 | | ssequn2 4089 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑤 ↔ (𝑤 ∪ (𝑢 ∩ (𝐴 × 𝐴))) = 𝑤) |
43 | 41, 42 | sylib 221 |
. . . . . . . . . . . 12
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝑤 ∪ (𝑢 ∩ (𝐴 × 𝐴))) = 𝑤) |
44 | 38, 43 | eqtr2d 2795 |
. . . . . . . . . . 11
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑤 = ((𝑤 ∩ (𝐴 × 𝐴)) ∪ (𝑢 ∩ (𝐴 × 𝐴)))) |
45 | | indir 4181 |
. . . . . . . . . . 11
⊢ ((𝑤 ∪ 𝑢) ∩ (𝐴 × 𝐴)) = ((𝑤 ∩ (𝐴 × 𝐴)) ∪ (𝑢 ∩ (𝐴 × 𝐴))) |
46 | 44, 45 | eqtr4di 2812 |
. . . . . . . . . 10
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑤 = ((𝑤 ∪ 𝑢) ∩ (𝐴 × 𝐴))) |
47 | | ineq1 4110 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑤 ∪ 𝑢) → (𝑥 ∩ (𝐴 × 𝐴)) = ((𝑤 ∪ 𝑢) ∩ (𝐴 × 𝐴))) |
48 | 47 | rspceeqv 3557 |
. . . . . . . . . 10
⊢ (((𝑤 ∪ 𝑢) ∈ 𝑈 ∧ 𝑤 = ((𝑤 ∪ 𝑢) ∩ (𝐴 × 𝐴))) → ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) |
49 | 35, 46, 48 | syl2anc 588 |
. . . . . . . . 9
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) |
50 | | elrest 16760 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) |
51 | 50 | biimpar 482 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
52 | 20, 21, 49, 51 | syl21anc 837 |
. . . . . . . 8
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
53 | | elrest 16760 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ↔ ∃𝑢 ∈ 𝑈 𝑣 = (𝑢 ∩ (𝐴 × 𝐴)))) |
54 | 53 | biimpa 481 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑢 ∈ 𝑈 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
55 | 14, 54 | syldanl 605 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑢 ∈ 𝑈 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
56 | 55 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) → ∃𝑢 ∈ 𝑈 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
57 | 52, 56 | r19.29a 3214 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
58 | 57 | ex 417 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ 𝒫 (𝐴 × 𝐴)) → (𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴)))) |
59 | 58 | ralrimiva 3114 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∀𝑤 ∈ 𝒫 (𝐴 × 𝐴)(𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴)))) |
60 | 9 | ad5antr 734 |
. . . . . . . 8
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → 𝑈 ∈ (UnifOn‘𝑋)) |
61 | 14 | ad5antr 734 |
. . . . . . . 8
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → (𝐴 × 𝐴) ∈ V) |
62 | | simpllr 776 |
. . . . . . . . . 10
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → 𝑢 ∈ 𝑈) |
63 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → 𝑥 ∈ 𝑈) |
64 | | ustincl 22909 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) → (𝑢 ∩ 𝑥) ∈ 𝑈) |
65 | 60, 62, 63, 64 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → (𝑢 ∩ 𝑥) ∈ 𝑈) |
66 | | simprl 771 |
. . . . . . . . . . 11
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
67 | | simprr 773 |
. . . . . . . . . . 11
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) |
68 | 66, 67 | ineq12d 4119 |
. . . . . . . . . 10
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → (𝑣 ∩ 𝑤) = ((𝑢 ∩ (𝐴 × 𝐴)) ∩ (𝑥 ∩ (𝐴 × 𝐴)))) |
69 | | inindir 4133 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ 𝑥) ∩ (𝐴 × 𝐴)) = ((𝑢 ∩ (𝐴 × 𝐴)) ∩ (𝑥 ∩ (𝐴 × 𝐴))) |
70 | 68, 69 | eqtr4di 2812 |
. . . . . . . . 9
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → (𝑣 ∩ 𝑤) = ((𝑢 ∩ 𝑥) ∩ (𝐴 × 𝐴))) |
71 | | ineq1 4110 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑢 ∩ 𝑥) → (𝑦 ∩ (𝐴 × 𝐴)) = ((𝑢 ∩ 𝑥) ∩ (𝐴 × 𝐴))) |
72 | 71 | rspceeqv 3557 |
. . . . . . . . 9
⊢ (((𝑢 ∩ 𝑥) ∈ 𝑈 ∧ (𝑣 ∩ 𝑤) = ((𝑢 ∩ 𝑥) ∩ (𝐴 × 𝐴))) → ∃𝑦 ∈ 𝑈 (𝑣 ∩ 𝑤) = (𝑦 ∩ (𝐴 × 𝐴))) |
73 | 65, 70, 72 | syl2anc 588 |
. . . . . . . 8
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → ∃𝑦 ∈ 𝑈 (𝑣 ∩ 𝑤) = (𝑦 ∩ (𝐴 × 𝐴))) |
74 | | elrest 16760 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → ((𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ↔ ∃𝑦 ∈ 𝑈 (𝑣 ∩ 𝑤) = (𝑦 ∩ (𝐴 × 𝐴)))) |
75 | 74 | biimpar 482 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ ∃𝑦 ∈ 𝑈 (𝑣 ∩ 𝑤) = (𝑦 ∩ (𝐴 × 𝐴))) → (𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
76 | 60, 61, 73, 75 | syl21anc 837 |
. . . . . . 7
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) → (𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
77 | 55 | adantr 485 |
. . . . . . . 8
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑢 ∈ 𝑈 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
78 | 9 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋)) |
79 | 14 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V) |
80 | | simpr 489 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
81 | 50 | biimpa 481 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) |
82 | 78, 79, 80, 81 | syl21anc 837 |
. . . . . . . 8
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) |
83 | | reeanv 3286 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝑈 ∃𝑥 ∈ 𝑈 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) ↔ (∃𝑢 ∈ 𝑈 𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ ∃𝑥 ∈ 𝑈 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) |
84 | 77, 82, 83 | sylanbrc 587 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑢 ∈ 𝑈 ∃𝑥 ∈ 𝑈 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) ∧ 𝑤 = (𝑥 ∩ (𝐴 × 𝐴)))) |
85 | 76, 84 | r19.29vva 3258 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → (𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
86 | 85 | ralrimiva 3114 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∀𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
87 | | simp-4l 783 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑈 ∈ (UnifOn‘𝑋)) |
88 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑢 ∈ 𝑈) |
89 | | ustdiag 22910 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑢) |
90 | 87, 88, 89 | syl2anc 588 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ( I ↾ 𝑋) ⊆ 𝑢) |
91 | | simp-4r 784 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝐴 ⊆ 𝑋) |
92 | | inss1 4134 |
. . . . . . . . . . . . . 14
⊢ (( I
↾ 𝑋) ∩ (𝐴 × 𝐴)) ⊆ ( I ↾ 𝑋) |
93 | | resss 5849 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ 𝑋) ⊆
I |
94 | 92, 93 | sstri 3902 |
. . . . . . . . . . . . 13
⊢ (( I
↾ 𝑋) ∩ (𝐴 × 𝐴)) ⊆ I |
95 | | iss 5876 |
. . . . . . . . . . . . 13
⊢ ((( I
↾ 𝑋) ∩ (𝐴 × 𝐴)) ⊆ I ↔ (( I ↾ 𝑋) ∩ (𝐴 × 𝐴)) = ( I ↾ dom (( I ↾ 𝑋) ∩ (𝐴 × 𝐴)))) |
96 | 94, 95 | mpbi 233 |
. . . . . . . . . . . 12
⊢ (( I
↾ 𝑋) ∩ (𝐴 × 𝐴)) = ( I ↾ dom (( I ↾ 𝑋) ∩ (𝐴 × 𝐴))) |
97 | | simpr 489 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
98 | | ssel2 3888 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝑋) |
99 | | equid 2020 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑢 = 𝑢 |
100 | | resieq 5835 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝑢( I ↾ 𝑋)𝑢 ↔ 𝑢 = 𝑢)) |
101 | 99, 100 | mpbiri 261 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → 𝑢( I ↾ 𝑋)𝑢) |
102 | 98, 98, 101 | syl2anc 588 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑢 ∈ 𝐴) → 𝑢( I ↾ 𝑋)𝑢) |
103 | | breq2 5037 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑢 → (𝑢( I ↾ 𝑋)𝑣 ↔ 𝑢( I ↾ 𝑋)𝑢)) |
104 | 103 | rspcev 3542 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑢( I ↾ 𝑋)𝑢) → ∃𝑣 ∈ 𝐴 𝑢( I ↾ 𝑋)𝑣) |
105 | 97, 102, 104 | syl2anc 588 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑢 ∈ 𝐴) → ∃𝑣 ∈ 𝐴 𝑢( I ↾ 𝑋)𝑣) |
106 | 105 | ralrimiva 3114 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑋 → ∀𝑢 ∈ 𝐴 ∃𝑣 ∈ 𝐴 𝑢( I ↾ 𝑋)𝑣) |
107 | | dminxp 6010 |
. . . . . . . . . . . . . 14
⊢ (dom (( I
↾ 𝑋) ∩ (𝐴 × 𝐴)) = 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∃𝑣 ∈ 𝐴 𝑢( I ↾ 𝑋)𝑣) |
108 | 106, 107 | sylibr 237 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑋 → dom (( I ↾ 𝑋) ∩ (𝐴 × 𝐴)) = 𝐴) |
109 | 108 | reseq2d 5824 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝑋 → ( I ↾ dom (( I ↾ 𝑋) ∩ (𝐴 × 𝐴))) = ( I ↾ 𝐴)) |
110 | 96, 109 | syl5req 2807 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑋 → ( I ↾ 𝐴) = (( I ↾ 𝑋) ∩ (𝐴 × 𝐴))) |
111 | 110 | adantl 486 |
. . . . . . . . . 10
⊢ ((( I
↾ 𝑋) ⊆ 𝑢 ∧ 𝐴 ⊆ 𝑋) → ( I ↾ 𝐴) = (( I ↾ 𝑋) ∩ (𝐴 × 𝐴))) |
112 | | ssrin 4139 |
. . . . . . . . . . 11
⊢ (( I
↾ 𝑋) ⊆ 𝑢 → (( I ↾ 𝑋) ∩ (𝐴 × 𝐴)) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
113 | 112 | adantr 485 |
. . . . . . . . . 10
⊢ ((( I
↾ 𝑋) ⊆ 𝑢 ∧ 𝐴 ⊆ 𝑋) → (( I ↾ 𝑋) ∩ (𝐴 × 𝐴)) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
114 | 111, 113 | eqsstrd 3931 |
. . . . . . . . 9
⊢ ((( I
↾ 𝑋) ⊆ 𝑢 ∧ 𝐴 ⊆ 𝑋) → ( I ↾ 𝐴) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
115 | 90, 91, 114 | syl2anc 588 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ( I ↾ 𝐴) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
116 | | simpr 489 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) |
117 | 115, 116 | sseqtrrd 3934 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ( I ↾ 𝐴) ⊆ 𝑣) |
118 | 117, 55 | r19.29a 3214 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ( I ↾ 𝐴) ⊆ 𝑣) |
119 | 14 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ∈ V) |
120 | | ustinvel 22911 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → ◡𝑢 ∈ 𝑈) |
121 | 87, 88, 120 | syl2anc 588 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ◡𝑢 ∈ 𝑈) |
122 | 116 | cnveqd 5716 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ◡𝑣 = ◡(𝑢 ∩ (𝐴 × 𝐴))) |
123 | | cnvin 5976 |
. . . . . . . . . . 11
⊢ ◡(𝑢 ∩ (𝐴 × 𝐴)) = (◡𝑢 ∩ ◡(𝐴 × 𝐴)) |
124 | | cnvxp 5987 |
. . . . . . . . . . . 12
⊢ ◡(𝐴 × 𝐴) = (𝐴 × 𝐴) |
125 | 124 | ineq2i 4115 |
. . . . . . . . . . 11
⊢ (◡𝑢 ∩ ◡(𝐴 × 𝐴)) = (◡𝑢 ∩ (𝐴 × 𝐴)) |
126 | 123, 125 | eqtri 2782 |
. . . . . . . . . 10
⊢ ◡(𝑢 ∩ (𝐴 × 𝐴)) = (◡𝑢 ∩ (𝐴 × 𝐴)) |
127 | 122, 126 | eqtrdi 2810 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ◡𝑣 = (◡𝑢 ∩ (𝐴 × 𝐴))) |
128 | | ineq1 4110 |
. . . . . . . . . 10
⊢ (𝑥 = ◡𝑢 → (𝑥 ∩ (𝐴 × 𝐴)) = (◡𝑢 ∩ (𝐴 × 𝐴))) |
129 | 128 | rspceeqv 3557 |
. . . . . . . . 9
⊢ ((◡𝑢 ∈ 𝑈 ∧ ◡𝑣 = (◡𝑢 ∩ (𝐴 × 𝐴))) → ∃𝑥 ∈ 𝑈 ◡𝑣 = (𝑥 ∩ (𝐴 × 𝐴))) |
130 | 121, 127,
129 | syl2anc 588 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ∃𝑥 ∈ 𝑈 ◡𝑣 = (𝑥 ∩ (𝐴 × 𝐴))) |
131 | | elrest 16760 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝑈 ◡𝑣 = (𝑥 ∩ (𝐴 × 𝐴)))) |
132 | 131 | biimpar 482 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) ∧ ∃𝑥 ∈ 𝑈 ◡𝑣 = (𝑥 ∩ (𝐴 × 𝐴))) → ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
133 | 87, 119, 130, 132 | syl21anc 837 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
134 | 133, 55 | r19.29a 3214 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
135 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → 𝑈 ∈ (UnifOn‘𝑋)) |
136 | 14 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → (𝐴 × 𝐴) ∈ V) |
137 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → 𝑥 ∈ 𝑈) |
138 | | elrestr 16761 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑥 ∈ 𝑈) → (𝑥 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
139 | 135, 136,
137, 138 | syl3anc 1369 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → (𝑥 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
140 | | inss1 4134 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∩ (𝐴 × 𝐴)) ⊆ 𝑥 |
141 | | coss1 5696 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ⊆ 𝑥 → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑥 ∘ (𝑥 ∩ (𝐴 × 𝐴)))) |
142 | | coss2 5697 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ⊆ 𝑥 → (𝑥 ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑥 ∘ 𝑥)) |
143 | 141, 142 | sstrd 3903 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ⊆ 𝑥 → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑥 ∘ 𝑥)) |
144 | 140, 143 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑥 ∘ 𝑥) |
145 | | sstr 3901 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑥 ∘ 𝑥) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
146 | 144, 145 | mpan 690 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∘ 𝑥) ⊆ 𝑢 → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
147 | 146 | adantl 486 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
148 | | inss2 4135 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
149 | | coss1 5696 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∘ (𝑥 ∩ (𝐴 × 𝐴)))) |
150 | | coss2 5697 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) |
151 | 149, 150 | sstrd 3903 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) |
152 | 148, 151 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) |
153 | | xpidtr 5955 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
154 | 152, 153 | sstri 3902 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴) |
155 | 154 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)) |
156 | 147, 155 | ssind 4138 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
157 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑥 ∩ (𝐴 × 𝐴)) → 𝑤 = (𝑥 ∩ (𝐴 × 𝐴))) |
158 | 157, 157 | coeq12d 5705 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑥 ∩ (𝐴 × 𝐴)) → (𝑤 ∘ 𝑤) = ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴)))) |
159 | 158 | sseq1d 3924 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑥 ∩ (𝐴 × 𝐴)) → ((𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴)) ↔ ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑢 ∩ (𝐴 × 𝐴)))) |
160 | 159 | rspcev 3542 |
. . . . . . . . . . 11
⊢ (((𝑥 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ((𝑥 ∩ (𝐴 × 𝐴)) ∘ (𝑥 ∩ (𝐴 × 𝐴))) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
161 | 139, 156,
160 | syl2anc 588 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑢) → ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
162 | | ustexhalf 22912 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 (𝑥 ∘ 𝑥) ⊆ 𝑢) |
163 | 162 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 (𝑥 ∘ 𝑥) ⊆ 𝑢) |
164 | 161, 163 | r19.29a 3214 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑢 ∈ 𝑈) → ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
165 | 164 | ad4ant13 751 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴))) |
166 | 116 | sseq2d 3925 |
. . . . . . . . 9
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ((𝑤 ∘ 𝑤) ⊆ 𝑣 ↔ (𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴)))) |
167 | 166 | rexbidv 3222 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → (∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣 ↔ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ (𝑢 ∩ (𝐴 × 𝐴)))) |
168 | 165, 167 | mpbird 260 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 = (𝑢 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣) |
169 | 168, 55 | r19.29a 3214 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣) |
170 | 118, 134,
169 | 3jca 1126 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → (( I ↾ 𝐴) ⊆ 𝑣 ∧ ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣)) |
171 | 59, 86, 170 | 3jca 1126 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → (∀𝑤 ∈ 𝒫 (𝐴 × 𝐴)(𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ ∀𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ (( I ↾ 𝐴) ⊆ 𝑣 ∧ ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣))) |
172 | 171 | ralrimiva 3114 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∀𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))(∀𝑤 ∈ 𝒫 (𝐴 × 𝐴)(𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ ∀𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ (( I ↾ 𝐴) ⊆ 𝑣 ∧ ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣))) |
173 | 2, 19, 172 | 3jca 1126 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝑈 ↾t (𝐴 × 𝐴)) ⊆ 𝒫 (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∀𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))(∀𝑤 ∈ 𝒫 (𝐴 × 𝐴)(𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ ∀𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ (( I ↾ 𝐴) ⊆ 𝑣 ∧ ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
174 | | isust 22905 |
. . 3
⊢ (𝐴 ∈ V → ((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ↔ ((𝑈 ↾t (𝐴 × 𝐴)) ⊆ 𝒫 (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∀𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))(∀𝑤 ∈ 𝒫 (𝐴 × 𝐴)(𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ ∀𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ (( I ↾ 𝐴) ⊆ 𝑣 ∧ ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
175 | 13, 174 | syl 17 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ↔ ((𝑈 ↾t (𝐴 × 𝐴)) ⊆ 𝒫 (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∀𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴))(∀𝑤 ∈ 𝒫 (𝐴 × 𝐴)(𝑣 ⊆ 𝑤 → 𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ ∀𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑣 ∩ 𝑤) ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ (( I ↾ 𝐴) ⊆ 𝑣 ∧ ◡𝑣 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ∧ ∃𝑤 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
176 | 173, 175 | mpbird 260 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) |