Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem1 Structured version   Visualization version   GIF version

Theorem vonioolem1 46636
Description: The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem1.x (𝜑𝑋 ∈ Fin)
vonioolem1.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem1.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem1.u (𝜑𝑋 ≠ ∅)
vonioolem1.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem1.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem1.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
vonioolem1.s 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
vonioolem1.r 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
vonioolem1.e 𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
vonioolem1.n 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
vonioolem1.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
vonioolem1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘   𝑆,𝑛   𝑇,𝑛   𝑘,𝑋,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝑆(𝑘)   𝑇(𝑘)   𝐸(𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem vonioolem1
StepHypRef Expression
1 vonioolem1.r . . . . 5 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
21a1i 11 . . . 4 (𝜑𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))))
3 vonioolem1.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
43a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
5 vonioolem1.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ Fin)
65mptexd 7244 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
76adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
84, 7fvmpt2d 7029 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
9 ovexd 7466 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
108, 9fvmpt2d 7029 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
1110oveq2d 7447 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = ((𝐵𝑘) − ((𝐴𝑘) + (1 / 𝑛))))
12 vonioolem1.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1312ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1413adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1514recnd 11287 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℂ)
16 vonioolem1.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
1716adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
1817ffvelcdmda 7104 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
1918recnd 11287 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℂ)
20 nnrecre 12306 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
2120ad2antlr 727 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
2221recnd 11287 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℂ)
2315, 19, 22subsub4d 11649 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)) = ((𝐵𝑘) − ((𝐴𝑘) + (1 / 𝑛))))
2411, 23eqtr4d 2778 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
2524prodeq2dv 15955 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
2625mpteq2dva 5248 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))))
272, 26eqtrd 2775 . . 3 (𝜑𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))))
28 nfv 1912 . . . 4 𝑘𝜑
29 rpssre 13040 . . . . . 6 + ⊆ ℝ
30 vonioolem1.t . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
3116ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
32 difrp 13071 . . . . . . . 8 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ((𝐴𝑘) < (𝐵𝑘) ↔ ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+))
3331, 13, 32syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐴𝑘) < (𝐵𝑘) ↔ ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+))
3430, 33mpbid 232 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+)
3529, 34sselid 3993 . . . . 5 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
3635recnd 11287 . . . 4 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
37 eqid 2735 . . . 4 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
3828, 5, 36, 37fprodsubrecnncnv 45864 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
3927, 38eqbrtrd 5170 . 2 (𝜑𝑇 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
40 vonioolem1.z . . 3 𝑍 = (ℤ𝑁)
41 nnex 12270 . . . . . 6 ℕ ∈ V
4241mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) ∈ V
4342a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) ∈ V)
441, 43eqeltrid 2843 . . 3 (𝜑𝑇 ∈ V)
45 vonioolem1.s . . . 4 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
4641mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ∈ V
4746a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ∈ V)
4845, 47eqeltrid 2843 . . 3 (𝜑𝑆 ∈ V)
49 vonioolem1.n . . . 4 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
50 1rp 13036 . . . . . . . . . 10 1 ∈ ℝ+
5150a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
52 eqid 2735 . . . . . . . . . . 11 (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
5328, 52, 34rnmptssd 45139 . . . . . . . . . 10 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ+)
54 vonioolem1.e . . . . . . . . . . 11 𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
55 ltso 11339 . . . . . . . . . . . . 13 < Or ℝ
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ)
5752rnmptfi 45114 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
585, 57syl 17 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
59 vonioolem1.u . . . . . . . . . . . . 13 (𝜑𝑋 ≠ ∅)
6028, 34, 52, 59rnmptn0 6266 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ≠ ∅)
6129a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ+ ⊆ ℝ)
6253, 61sstrd 4006 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)
63 fiinfcl 9539 . . . . . . . . . . . 12 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6456, 58, 60, 62, 63syl13anc 1371 . . . . . . . . . . 11 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6554, 64eqeltrid 2843 . . . . . . . . . 10 (𝜑𝐸 ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6653, 65sseldd 3996 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
6751, 66rpdivcld 13092 . . . . . . . 8 (𝜑 → (1 / 𝐸) ∈ ℝ+)
6867rpred 13075 . . . . . . 7 (𝜑 → (1 / 𝐸) ∈ ℝ)
6967rpge0d 13079 . . . . . . 7 (𝜑 → 0 ≤ (1 / 𝐸))
70 flge0nn0 13857 . . . . . . 7 (((1 / 𝐸) ∈ ℝ ∧ 0 ≤ (1 / 𝐸)) → (⌊‘(1 / 𝐸)) ∈ ℕ0)
7168, 69, 70syl2anc 584 . . . . . 6 (𝜑 → (⌊‘(1 / 𝐸)) ∈ ℕ0)
72 nn0p1nn 12563 . . . . . 6 ((⌊‘(1 / 𝐸)) ∈ ℕ0 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
7371, 72syl 17 . . . . 5 (𝜑 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
7473nnzd 12638 . . . 4 (𝜑 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℤ)
7549, 74eqeltrid 2843 . . 3 (𝜑𝑁 ∈ ℤ)
7649recnnltrp 45327 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
7766, 76syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
7877simpld 494 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
79 uznnssnn 12935 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ𝑁) ⊆ ℕ)
8078, 79syl 17 . . . . . . . . . 10 (𝜑 → (ℤ𝑁) ⊆ ℕ)
8140, 80eqsstrid 4044 . . . . . . . . 9 (𝜑𝑍 ⊆ ℕ)
8281adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑍 ⊆ ℕ)
83 simpr 484 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝑍)
8482, 83sseldd 3996 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛 ∈ ℕ)
85 vonioolem1.d . . . . . . . . 9 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
8685a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
875adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
88 eqid 2735 . . . . . . . . . 10 dom (voln‘𝑋) = dom (voln‘𝑋)
8918, 21readdcld 11288 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
9089fmpttd 7135 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
918feq1d 6721 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
9290, 91mpbird 257 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
9312adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
9487, 88, 92, 93hoimbl 46587 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
9594elexd 3502 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
9686, 95fvmpt2d 7029 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
9784, 96syldan 591 . . . . . 6 ((𝜑𝑛𝑍) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
9897fveq2d 6911 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
995adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑋 ∈ Fin)
10059adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑋 ≠ ∅)
10184, 92syldan 591 . . . . . 6 ((𝜑𝑛𝑍) → (𝐶𝑛):𝑋⟶ℝ)
10212adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝐵:𝑋⟶ℝ)
103 eqid 2735 . . . . . 6 X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))
10499, 100, 101, 102, 103vonn0hoi 46626 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
105101ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
10684, 14syldanl 602 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
107 volico 45939 . . . . . . . 8 ((((𝐶𝑛)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0))
108105, 106, 107syl2anc 584 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0))
10984, 10syldanl 602 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
11084, 21syldanl 602 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
11178nnrecred 12315 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑁) ∈ ℝ)
112111ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑁) ∈ ℝ)
11335adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
11440eleq2i 2831 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
115114biimpi 216 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
116 eluzle 12889 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑁) → 𝑁𝑛)
117115, 116syl 17 . . . . . . . . . . . . . 14 (𝑛𝑍𝑁𝑛)
118117adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑁𝑛)
11978nnrpd 13073 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ+)
120119adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑁 ∈ ℝ+)
121 nnrp 13044 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
12284, 121syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ ℝ+)
123120, 122lerecd 13094 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑁𝑛 ↔ (1 / 𝑛) ≤ (1 / 𝑁)))
124118, 123mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (1 / 𝑛) ≤ (1 / 𝑁))
125124adantr 480 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) ≤ (1 / 𝑁))
126111adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (1 / 𝑁) ∈ ℝ)
12729, 66sselid 3993 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ)
128127adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝐸 ∈ ℝ)
12977simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) < 𝐸)
130129adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (1 / 𝑁) < 𝐸)
13162adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)
13258adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
133 id 22 . . . . . . . . . . . . . . . . 17 (𝑘𝑋𝑘𝑋)
134 ovexd 7466 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐵𝑘) − (𝐴𝑘)) ∈ V)
13552elrnmpt1 5974 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ((𝐵𝑘) − (𝐴𝑘)) ∈ V) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
136133, 134, 135syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑘𝑋 → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
137136adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
138 infrefilb 12252 . . . . . . . . . . . . . . 15 ((ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin ∧ ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ≤ ((𝐵𝑘) − (𝐴𝑘)))
139131, 132, 137, 138syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ≤ ((𝐵𝑘) − (𝐴𝑘)))
14054, 139eqbrtrid 5183 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝐸 ≤ ((𝐵𝑘) − (𝐴𝑘)))
141126, 128, 35, 130, 140ltletrd 11419 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (1 / 𝑁) < ((𝐵𝑘) − (𝐴𝑘)))
142141adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑁) < ((𝐵𝑘) − (𝐴𝑘)))
143110, 112, 113, 125, 142lelttrd 11417 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐵𝑘) − (𝐴𝑘)))
14484, 18syldanl 602 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
145144, 110, 106ltaddsub2d 11862 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛)) < (𝐵𝑘) ↔ (1 / 𝑛) < ((𝐵𝑘) − (𝐴𝑘))))
146143, 145mpbird 257 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) < (𝐵𝑘))
147109, 146eqbrtrd 5170 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) < (𝐵𝑘))
148147iftrued 4539 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
149108, 148eqtrd 2775 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
150149prodeq2dv 15955 . . . . 5 ((𝜑𝑛𝑍) → ∏𝑘𝑋 (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
15198, 104, 1503eqtrd 2779 . . . 4 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
152 fvexd 6922 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) ∈ V)
15345fvmpt2 7027 . . . . 5 ((𝑛 ∈ ℕ ∧ ((voln‘𝑋)‘(𝐷𝑛)) ∈ V) → (𝑆𝑛) = ((voln‘𝑋)‘(𝐷𝑛)))
15484, 152, 153syl2anc 584 . . . 4 ((𝜑𝑛𝑍) → (𝑆𝑛) = ((voln‘𝑋)‘(𝐷𝑛)))
155 prodex 15938 . . . . . 6 𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V
156155a1i 11 . . . . 5 ((𝜑𝑛𝑍) → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V)
1571fvmpt2 7027 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V) → (𝑇𝑛) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
15884, 156, 157syl2anc 584 . . . 4 ((𝜑𝑛𝑍) → (𝑇𝑛) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
159151, 154, 1583eqtr4rd 2786 . . 3 ((𝜑𝑛𝑍) → (𝑇𝑛) = (𝑆𝑛))
16040, 44, 48, 75, 159climeq 15600 . 2 (𝜑 → (𝑇 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) ↔ 𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))))
16139, 160mpbid 232 1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  ifcif 4531   class class class wbr 5148  cmpt 5231   Or wor 5596  dom cdm 5689  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  Xcixp 8936  Fincfn 8984  infcinf 9479  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  cuz 12876  +crp 13032  [,)cico 13386  cfl 13827  cli 15517  cprod 15936  volcvol 25512  volncvoln 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-salg 46265  df-sumge0 46319  df-mea 46406  df-ome 46446  df-caragen 46448  df-ovoln 46493  df-voln 46495
This theorem is referenced by:  vonioolem2  46637
  Copyright terms: Public domain W3C validator