Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem1 Structured version   Visualization version   GIF version

Theorem vonioolem1 44218
Description: The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem1.x (𝜑𝑋 ∈ Fin)
vonioolem1.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem1.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem1.u (𝜑𝑋 ≠ ∅)
vonioolem1.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem1.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem1.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
vonioolem1.s 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
vonioolem1.r 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
vonioolem1.e 𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
vonioolem1.n 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
vonioolem1.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
vonioolem1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘   𝑆,𝑛   𝑇,𝑛   𝑘,𝑋,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝑆(𝑘)   𝑇(𝑘)   𝐸(𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem vonioolem1
StepHypRef Expression
1 vonioolem1.r . . . . 5 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
21a1i 11 . . . 4 (𝜑𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))))
3 vonioolem1.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
43a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
5 vonioolem1.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ Fin)
65mptexd 7100 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
76adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
84, 7fvmpt2d 6888 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
9 ovexd 7310 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
108, 9fvmpt2d 6888 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
1110oveq2d 7291 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = ((𝐵𝑘) − ((𝐴𝑘) + (1 / 𝑛))))
12 vonioolem1.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1312ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1413adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1514recnd 11003 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℂ)
16 vonioolem1.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
1716adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
1817ffvelrnda 6961 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
1918recnd 11003 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℂ)
20 nnrecre 12015 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
2120ad2antlr 724 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
2221recnd 11003 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℂ)
2315, 19, 22subsub4d 11363 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)) = ((𝐵𝑘) − ((𝐴𝑘) + (1 / 𝑛))))
2411, 23eqtr4d 2781 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
2524prodeq2dv 15633 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
2625mpteq2dva 5174 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))))
272, 26eqtrd 2778 . . 3 (𝜑𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))))
28 nfv 1917 . . . 4 𝑘𝜑
29 rpssre 12737 . . . . . 6 + ⊆ ℝ
30 vonioolem1.t . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
3116ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
32 difrp 12768 . . . . . . . 8 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ((𝐴𝑘) < (𝐵𝑘) ↔ ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+))
3331, 13, 32syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐴𝑘) < (𝐵𝑘) ↔ ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+))
3430, 33mpbid 231 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+)
3529, 34sselid 3919 . . . . 5 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
3635recnd 11003 . . . 4 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
37 eqid 2738 . . . 4 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
3828, 5, 36, 37fprodsubrecnncnv 43449 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
3927, 38eqbrtrd 5096 . 2 (𝜑𝑇 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
40 vonioolem1.z . . 3 𝑍 = (ℤ𝑁)
41 nnex 11979 . . . . . 6 ℕ ∈ V
4241mptex 7099 . . . . 5 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) ∈ V
4342a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) ∈ V)
441, 43eqeltrid 2843 . . 3 (𝜑𝑇 ∈ V)
45 vonioolem1.s . . . 4 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
4641mptex 7099 . . . . 5 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ∈ V
4746a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ∈ V)
4845, 47eqeltrid 2843 . . 3 (𝜑𝑆 ∈ V)
49 vonioolem1.n . . . 4 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
50 1rp 12734 . . . . . . . . . 10 1 ∈ ℝ+
5150a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
52 eqid 2738 . . . . . . . . . . 11 (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
5328, 52, 34rnmptssd 42735 . . . . . . . . . 10 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ+)
54 vonioolem1.e . . . . . . . . . . 11 𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
55 ltso 11055 . . . . . . . . . . . . 13 < Or ℝ
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ)
5752rnmptfi 42707 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
585, 57syl 17 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
59 vonioolem1.u . . . . . . . . . . . . 13 (𝜑𝑋 ≠ ∅)
6028, 34, 52, 59rnmptn0 6147 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ≠ ∅)
6129a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ+ ⊆ ℝ)
6253, 61sstrd 3931 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)
63 fiinfcl 9260 . . . . . . . . . . . 12 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6456, 58, 60, 62, 63syl13anc 1371 . . . . . . . . . . 11 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6554, 64eqeltrid 2843 . . . . . . . . . 10 (𝜑𝐸 ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6653, 65sseldd 3922 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
6751, 66rpdivcld 12789 . . . . . . . 8 (𝜑 → (1 / 𝐸) ∈ ℝ+)
6867rpred 12772 . . . . . . 7 (𝜑 → (1 / 𝐸) ∈ ℝ)
6967rpge0d 12776 . . . . . . 7 (𝜑 → 0 ≤ (1 / 𝐸))
70 flge0nn0 13540 . . . . . . 7 (((1 / 𝐸) ∈ ℝ ∧ 0 ≤ (1 / 𝐸)) → (⌊‘(1 / 𝐸)) ∈ ℕ0)
7168, 69, 70syl2anc 584 . . . . . 6 (𝜑 → (⌊‘(1 / 𝐸)) ∈ ℕ0)
72 nn0p1nn 12272 . . . . . 6 ((⌊‘(1 / 𝐸)) ∈ ℕ0 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
7371, 72syl 17 . . . . 5 (𝜑 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
7473nnzd 12425 . . . 4 (𝜑 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℤ)
7549, 74eqeltrid 2843 . . 3 (𝜑𝑁 ∈ ℤ)
7649recnnltrp 42916 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
7766, 76syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
7877simpld 495 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
79 uznnssnn 12635 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ𝑁) ⊆ ℕ)
8078, 79syl 17 . . . . . . . . . 10 (𝜑 → (ℤ𝑁) ⊆ ℕ)
8140, 80eqsstrid 3969 . . . . . . . . 9 (𝜑𝑍 ⊆ ℕ)
8281adantr 481 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑍 ⊆ ℕ)
83 simpr 485 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝑍)
8482, 83sseldd 3922 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛 ∈ ℕ)
85 vonioolem1.d . . . . . . . . 9 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
8685a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
875adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
88 eqid 2738 . . . . . . . . . 10 dom (voln‘𝑋) = dom (voln‘𝑋)
8918, 21readdcld 11004 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
9089fmpttd 6989 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
918feq1d 6585 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
9290, 91mpbird 256 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
9312adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
9487, 88, 92, 93hoimbl 44169 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
9594elexd 3452 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
9686, 95fvmpt2d 6888 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
9784, 96syldan 591 . . . . . 6 ((𝜑𝑛𝑍) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
9897fveq2d 6778 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
995adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑋 ∈ Fin)
10059adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑋 ≠ ∅)
10184, 92syldan 591 . . . . . 6 ((𝜑𝑛𝑍) → (𝐶𝑛):𝑋⟶ℝ)
10212adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝐵:𝑋⟶ℝ)
103 eqid 2738 . . . . . 6 X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))
10499, 100, 101, 102, 103vonn0hoi 44208 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
105101ffvelrnda 6961 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
10684, 14syldanl 602 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
107 volico 43524 . . . . . . . 8 ((((𝐶𝑛)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0))
108105, 106, 107syl2anc 584 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0))
10984, 10syldanl 602 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
11084, 21syldanl 602 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
11178nnrecred 12024 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑁) ∈ ℝ)
112111ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑁) ∈ ℝ)
11335adantlr 712 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
11440eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
115114biimpi 215 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
116 eluzle 12595 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑁) → 𝑁𝑛)
117115, 116syl 17 . . . . . . . . . . . . . 14 (𝑛𝑍𝑁𝑛)
118117adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑁𝑛)
11978nnrpd 12770 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ+)
120119adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑁 ∈ ℝ+)
121 nnrp 12741 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
12284, 121syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ ℝ+)
123120, 122lerecd 12791 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑁𝑛 ↔ (1 / 𝑛) ≤ (1 / 𝑁)))
124118, 123mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (1 / 𝑛) ≤ (1 / 𝑁))
125124adantr 481 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) ≤ (1 / 𝑁))
126111adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (1 / 𝑁) ∈ ℝ)
12729, 66sselid 3919 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ)
128127adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝐸 ∈ ℝ)
12977simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) < 𝐸)
130129adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (1 / 𝑁) < 𝐸)
13162adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)
13258adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
133 id 22 . . . . . . . . . . . . . . . . 17 (𝑘𝑋𝑘𝑋)
134 ovexd 7310 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐵𝑘) − (𝐴𝑘)) ∈ V)
13552elrnmpt1 5867 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ((𝐵𝑘) − (𝐴𝑘)) ∈ V) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
136133, 134, 135syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑘𝑋 → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
137136adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
138 infrefilb 11961 . . . . . . . . . . . . . . 15 ((ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin ∧ ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ≤ ((𝐵𝑘) − (𝐴𝑘)))
139131, 132, 137, 138syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ≤ ((𝐵𝑘) − (𝐴𝑘)))
14054, 139eqbrtrid 5109 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝐸 ≤ ((𝐵𝑘) − (𝐴𝑘)))
141126, 128, 35, 130, 140ltletrd 11135 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (1 / 𝑁) < ((𝐵𝑘) − (𝐴𝑘)))
142141adantlr 712 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑁) < ((𝐵𝑘) − (𝐴𝑘)))
143110, 112, 113, 125, 142lelttrd 11133 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐵𝑘) − (𝐴𝑘)))
14484, 18syldanl 602 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
145144, 110, 106ltaddsub2d 11576 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛)) < (𝐵𝑘) ↔ (1 / 𝑛) < ((𝐵𝑘) − (𝐴𝑘))))
146143, 145mpbird 256 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) < (𝐵𝑘))
147109, 146eqbrtrd 5096 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) < (𝐵𝑘))
148147iftrued 4467 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
149108, 148eqtrd 2778 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
150149prodeq2dv 15633 . . . . 5 ((𝜑𝑛𝑍) → ∏𝑘𝑋 (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
15198, 104, 1503eqtrd 2782 . . . 4 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
152 fvexd 6789 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) ∈ V)
15345fvmpt2 6886 . . . . 5 ((𝑛 ∈ ℕ ∧ ((voln‘𝑋)‘(𝐷𝑛)) ∈ V) → (𝑆𝑛) = ((voln‘𝑋)‘(𝐷𝑛)))
15484, 152, 153syl2anc 584 . . . 4 ((𝜑𝑛𝑍) → (𝑆𝑛) = ((voln‘𝑋)‘(𝐷𝑛)))
155 prodex 15617 . . . . . 6 𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V
156155a1i 11 . . . . 5 ((𝜑𝑛𝑍) → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V)
1571fvmpt2 6886 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V) → (𝑇𝑛) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
15884, 156, 157syl2anc 584 . . . 4 ((𝜑𝑛𝑍) → (𝑇𝑛) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
159151, 154, 1583eqtr4rd 2789 . . 3 ((𝜑𝑛𝑍) → (𝑇𝑛) = (𝑆𝑛))
16040, 44, 48, 75, 159climeq 15276 . 2 (𝜑 → (𝑇 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) ↔ 𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))))
16139, 160mpbid 231 1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074  cmpt 5157   Or wor 5502  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Xcixp 8685  Fincfn 8733  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  +crp 12730  [,)cico 13081  cfl 13510  cli 15193  cprod 15615  volcvol 24627  volncvoln 44076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-salg 43850  df-sumge0 43901  df-mea 43988  df-ome 44028  df-caragen 44030  df-ovoln 44075  df-voln 44077
This theorem is referenced by:  vonioolem2  44219
  Copyright terms: Public domain W3C validator