Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioolem1 Structured version   Visualization version   GIF version

Theorem vonioolem1 42830
 Description: The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioolem1.x (𝜑𝑋 ∈ Fin)
vonioolem1.a (𝜑𝐴:𝑋⟶ℝ)
vonioolem1.b (𝜑𝐵:𝑋⟶ℝ)
vonioolem1.u (𝜑𝑋 ≠ ∅)
vonioolem1.t ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
vonioolem1.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
vonioolem1.d 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
vonioolem1.s 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
vonioolem1.r 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
vonioolem1.e 𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
vonioolem1.n 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
vonioolem1.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
vonioolem1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑘,𝑛   𝐶,𝑘   𝑆,𝑛   𝑇,𝑛   𝑘,𝑋,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝑆(𝑘)   𝑇(𝑘)   𝐸(𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem vonioolem1
StepHypRef Expression
1 vonioolem1.r . . . . 5 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
21a1i 11 . . . 4 (𝜑𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))))
3 vonioolem1.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
43a1i 11 . . . . . . . . . 10 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛)))))
5 vonioolem1.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ Fin)
65mptexd 6985 . . . . . . . . . . 11 (𝜑 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
76adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))) ∈ V)
84, 7fvmpt2d 6776 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
9 ovexd 7186 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ V)
108, 9fvmpt2d 6776 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
1110oveq2d 7167 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = ((𝐵𝑘) − ((𝐴𝑘) + (1 / 𝑛))))
12 vonioolem1.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
1312ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1413adantlr 711 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
1514recnd 10661 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℂ)
16 vonioolem1.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
1716adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴:𝑋⟶ℝ)
1817ffvelrnda 6846 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
1918recnd 10661 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℂ)
20 nnrecre 11671 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
2120ad2antlr 723 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
2221recnd 10661 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℂ)
2315, 19, 22subsub4d 11020 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)) = ((𝐵𝑘) − ((𝐴𝑘) + (1 / 𝑛))))
2411, 23eqtr4d 2863 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
2524prodeq2dv 15269 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) = ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
2625mpteq2dva 5157 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))))
272, 26eqtrd 2860 . . 3 (𝜑𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))))
28 nfv 1908 . . . 4 𝑘𝜑
29 rpssre 12389 . . . . . 6 + ⊆ ℝ
30 vonioolem1.t . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
3116ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
32 difrp 12420 . . . . . . . 8 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → ((𝐴𝑘) < (𝐵𝑘) ↔ ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+))
3331, 13, 32syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐴𝑘) < (𝐵𝑘) ↔ ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+))
3430, 33mpbid 233 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ+)
3529, 34sseldi 3968 . . . . 5 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
3635recnd 10661 . . . 4 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
37 eqid 2825 . . . 4 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛)))
3828, 5, 36, 37fprodsubrecnncnv 42059 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (((𝐵𝑘) − (𝐴𝑘)) − (1 / 𝑛))) ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
3927, 38eqbrtrd 5084 . 2 (𝜑𝑇 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
40 vonioolem1.z . . 3 𝑍 = (ℤ𝑁)
41 nnex 11636 . . . . . 6 ℕ ∈ V
4241mptex 6984 . . . . 5 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) ∈ V
4342a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘))) ∈ V)
441, 43eqeltrid 2921 . . 3 (𝜑𝑇 ∈ V)
45 vonioolem1.s . . . 4 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))
4641mptex 6984 . . . . 5 (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ∈ V
4746a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛))) ∈ V)
4845, 47eqeltrid 2921 . . 3 (𝜑𝑆 ∈ V)
49 vonioolem1.n . . . 4 𝑁 = ((⌊‘(1 / 𝐸)) + 1)
50 1rp 12386 . . . . . . . . . 10 1 ∈ ℝ+
5150a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ+)
52 eqid 2825 . . . . . . . . . . 11 (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) = (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))
5328, 52, 34rnmptssd 41325 . . . . . . . . . 10 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ+)
54 vonioolem1.e . . . . . . . . . . 11 𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )
55 ltso 10713 . . . . . . . . . . . . 13 < Or ℝ
5655a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ)
5752rnmptfi 41294 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
585, 57syl 17 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
59 vonioolem1.u . . . . . . . . . . . . 13 (𝜑𝑋 ≠ ∅)
6028, 34, 52, 59rnmptn0 41351 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ≠ ∅)
6129a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ+ ⊆ ℝ)
6253, 61sstrd 3980 . . . . . . . . . . . 12 (𝜑 → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)
63 fiinfcl 8957 . . . . . . . . . . . 12 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6456, 58, 60, 62, 63syl13anc 1366 . . . . . . . . . . 11 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6554, 64eqeltrid 2921 . . . . . . . . . 10 (𝜑𝐸 ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
6653, 65sseldd 3971 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
6751, 66rpdivcld 12441 . . . . . . . 8 (𝜑 → (1 / 𝐸) ∈ ℝ+)
6867rpred 12424 . . . . . . 7 (𝜑 → (1 / 𝐸) ∈ ℝ)
6967rpge0d 12428 . . . . . . 7 (𝜑 → 0 ≤ (1 / 𝐸))
70 flge0nn0 13183 . . . . . . 7 (((1 / 𝐸) ∈ ℝ ∧ 0 ≤ (1 / 𝐸)) → (⌊‘(1 / 𝐸)) ∈ ℕ0)
7168, 69, 70syl2anc 584 . . . . . 6 (𝜑 → (⌊‘(1 / 𝐸)) ∈ ℕ0)
72 nn0p1nn 11928 . . . . . 6 ((⌊‘(1 / 𝐸)) ∈ ℕ0 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
7371, 72syl 17 . . . . 5 (𝜑 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ)
7473nnzd 12078 . . . 4 (𝜑 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℤ)
7549, 74eqeltrid 2921 . . 3 (𝜑𝑁 ∈ ℤ)
7649recnnltrp 41512 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
7766, 76syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
7877simpld 495 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
79 uznnssnn 12287 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ𝑁) ⊆ ℕ)
8078, 79syl 17 . . . . . . . . . 10 (𝜑 → (ℤ𝑁) ⊆ ℕ)
8140, 80eqsstrid 4018 . . . . . . . . 9 (𝜑𝑍 ⊆ ℕ)
8281adantr 481 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑍 ⊆ ℕ)
83 simpr 485 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝑍)
8482, 83sseldd 3971 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛 ∈ ℕ)
85 vonioolem1.d . . . . . . . . 9 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
8685a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
875adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
88 eqid 2825 . . . . . . . . . 10 dom (voln‘𝑋) = dom (voln‘𝑋)
8918, 21readdcld 10662 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) ∈ ℝ)
9089fmpttd 6874 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ)
918feq1d 6495 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))):𝑋⟶ℝ))
9290, 91mpbird 258 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ)
9312adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐵:𝑋⟶ℝ)
9487, 88, 92, 93hoimbl 42781 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ dom (voln‘𝑋))
9594elexd 3519 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) ∈ V)
9686, 95fvmpt2d 6776 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
9784, 96syldan 591 . . . . . 6 ((𝜑𝑛𝑍) → (𝐷𝑛) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))
9897fveq2d 6670 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) = ((voln‘𝑋)‘X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
995adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑋 ∈ Fin)
10059adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑋 ≠ ∅)
10184, 92syldan 591 . . . . . 6 ((𝜑𝑛𝑍) → (𝐶𝑛):𝑋⟶ℝ)
10212adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝐵:𝑋⟶ℝ)
103 eqid 2825 . . . . . 6 X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))
10499, 100, 101, 102, 103vonn0hoi 42820 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))))
105101ffvelrnda 6846 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) ∈ ℝ)
10684, 14syldanl 601 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
107 volico 42136 . . . . . . . 8 ((((𝐶𝑛)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0))
108105, 106, 107syl2anc 584 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0))
10984, 10syldanl 601 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) = ((𝐴𝑘) + (1 / 𝑛)))
11084, 21syldanl 601 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
11178nnrecred 11680 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑁) ∈ ℝ)
112111ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑁) ∈ ℝ)
11335adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
11440eleq2i 2908 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
115114biimpi 217 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
116 eluzle 12248 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑁) → 𝑁𝑛)
117115, 116syl 17 . . . . . . . . . . . . . 14 (𝑛𝑍𝑁𝑛)
118117adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑁𝑛)
11978nnrpd 12422 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ+)
120119adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑁 ∈ ℝ+)
121 nnrp 12393 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
12284, 121syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ ℝ+)
123120, 122lerecd 12443 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑁𝑛 ↔ (1 / 𝑛) ≤ (1 / 𝑁)))
124118, 123mpbid 233 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (1 / 𝑛) ≤ (1 / 𝑁))
125124adantr 481 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) ≤ (1 / 𝑁))
126111adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (1 / 𝑁) ∈ ℝ)
12729, 66sseldi 3968 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ)
128127adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝐸 ∈ ℝ)
12977simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) < 𝐸)
130129adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → (1 / 𝑁) < 𝐸)
13162adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ)
13258adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin)
133 id 22 . . . . . . . . . . . . . . . . 17 (𝑘𝑋𝑘𝑋)
134 ovexd 7186 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐵𝑘) − (𝐴𝑘)) ∈ V)
13552elrnmpt1 5828 . . . . . . . . . . . . . . . . 17 ((𝑘𝑋 ∧ ((𝐵𝑘) − (𝐴𝑘)) ∈ V) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
136133, 134, 135syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑘𝑋 → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
137136adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))))
138 infrefilb 41518 . . . . . . . . . . . . . . 15 ((ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))) ∈ Fin ∧ ((𝐵𝑘) − (𝐴𝑘)) ∈ ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘)))) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ≤ ((𝐵𝑘) − (𝐴𝑘)))
139131, 132, 137, 138syl3anc 1365 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < ) ≤ ((𝐵𝑘) − (𝐴𝑘)))
14054, 139eqbrtrid 5097 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝐸 ≤ ((𝐵𝑘) − (𝐴𝑘)))
141126, 128, 35, 130, 140ltletrd 10792 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (1 / 𝑁) < ((𝐵𝑘) − (𝐴𝑘)))
142141adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑁) < ((𝐵𝑘) − (𝐴𝑘)))
143110, 112, 113, 125, 142lelttrd 10790 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐵𝑘) − (𝐴𝑘)))
14484, 18syldanl 601 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
145144, 110, 106ltaddsub2d 11233 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (((𝐴𝑘) + (1 / 𝑛)) < (𝐵𝑘) ↔ (1 / 𝑛) < ((𝐵𝑘) − (𝐴𝑘))))
146143, 145mpbird 258 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐴𝑘) + (1 / 𝑛)) < (𝐵𝑘))
147109, 146eqbrtrd 5084 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → ((𝐶𝑛)‘𝑘) < (𝐵𝑘))
148147iftrued 4477 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → if(((𝐶𝑛)‘𝑘) < (𝐵𝑘), ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)), 0) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
149108, 148eqtrd 2860 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑋) → (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
150149prodeq2dv 15269 . . . . 5 ((𝜑𝑛𝑍) → ∏𝑘𝑋 (vol‘(((𝐶𝑛)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
15198, 104, 1503eqtrd 2864 . . . 4 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
152 fvexd 6681 . . . . 5 ((𝜑𝑛𝑍) → ((voln‘𝑋)‘(𝐷𝑛)) ∈ V)
15345fvmpt2 6774 . . . . 5 ((𝑛 ∈ ℕ ∧ ((voln‘𝑋)‘(𝐷𝑛)) ∈ V) → (𝑆𝑛) = ((voln‘𝑋)‘(𝐷𝑛)))
15484, 152, 153syl2anc 584 . . . 4 ((𝜑𝑛𝑍) → (𝑆𝑛) = ((voln‘𝑋)‘(𝐷𝑛)))
155 prodex 15253 . . . . . 6 𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V
156155a1i 11 . . . . 5 ((𝜑𝑛𝑍) → ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V)
1571fvmpt2 6774 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)) ∈ V) → (𝑇𝑛) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
15884, 156, 157syl2anc 584 . . . 4 ((𝜑𝑛𝑍) → (𝑇𝑛) = ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))
159151, 154, 1583eqtr4rd 2871 . . 3 ((𝜑𝑛𝑍) → (𝑇𝑛) = (𝑆𝑛))
16040, 44, 48, 75, 159climeq 14917 . 2 (𝜑 → (𝑇 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) ↔ 𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘))))
16139, 160mpbid 233 1 (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  Vcvv 3499   ⊆ wss 3939  ∅c0 4294  ifcif 4469   class class class wbr 5062   ↦ cmpt 5142   Or wor 5471  dom cdm 5553  ran crn 5554  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151  Xcixp 8453  Fincfn 8501  infcinf 8897  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667   ≤ cle 10668   − cmin 10862   / cdiv 11289  ℕcn 11630  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  ℝ+crp 12382  [,)cico 12733  ⌊cfl 13153   ⇝ cli 14834  ∏cprod 15251  volcvol 23981  volncvoln 42688 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-prod 15252  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-minusg 18039  df-mulg 18157  df-subg 18208  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-drng 19426  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cn 21753  df-cnp 21754  df-cmp 21913  df-tx 22088  df-hmeo 22281  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-ovol 23982  df-vol 23983  df-salg 42462  df-sumge0 42513  df-mea 42600  df-ome 42640  df-caragen 42642  df-ovoln 42687  df-voln 42689 This theorem is referenced by:  vonioolem2  42831
 Copyright terms: Public domain W3C validator