Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcoss2 Structured version   Visualization version   GIF version

Theorem refrelcoss2 36205
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel2 36256. (Contributed by Peter Mazsa, 30-Jul-2019.)
Assertion
Ref Expression
refrelcoss2 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)

Proof of Theorem refrelcoss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrelcoss3 36204 . 2 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
2 idinxpss 36071 . . 3 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
32anbi1i 627 . 2 ((( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) ↔ (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅))
41, 3mpbir 234 1 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wral 3053  cin 3842  wss 3843   class class class wbr 5030   I cid 5428   × cxp 5523  dom cdm 5525  ran crn 5526  Rel wrel 5530  ccoss 35956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-coss 36160
This theorem is referenced by:  cossssid  36208  refrelcoss  36263
  Copyright terms: Public domain W3C validator