| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcoss2 | Structured version Visualization version GIF version | ||
| Description: The class of cosets by 𝑅 is reflexive, see dfrefrel2 38516. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| refrelcoss2 | ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelcoss3 38464 | . 2 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) | |
| 2 | idinxpss 38313 | . . 3 ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) ↔ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 class class class wbr 5143 I cid 5577 × cxp 5683 dom cdm 5685 ran crn 5686 Rel wrel 5690 ≀ ccoss 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-coss 38412 |
| This theorem is referenced by: cossssid 38468 refrelcoss 38524 |
| Copyright terms: Public domain | W3C validator |