![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrcn | Structured version Visualization version GIF version |
Description: The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
dvrcn.j | β’ π½ = (TopOpenβπ ) |
dvrcn.d | β’ / = (/rβπ ) |
dvrcn.u | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
dvrcn | β’ (π β TopDRing β / β ((π½ Γt (π½ βΎt π)) Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2728 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
3 | dvrcn.u | . . 3 β’ π = (Unitβπ ) | |
4 | eqid 2728 | . . 3 β’ (invrβπ ) = (invrβπ ) | |
5 | dvrcn.d | . . 3 β’ / = (/rβπ ) | |
6 | 1, 2, 3, 4, 5 | dvrfval 20340 | . 2 β’ / = (π₯ β (Baseβπ ), π¦ β π β¦ (π₯(.rβπ )((invrβπ )βπ¦))) |
7 | dvrcn.j | . . 3 β’ π½ = (TopOpenβπ ) | |
8 | tdrgtrg 24076 | . . 3 β’ (π β TopDRing β π β TopRing) | |
9 | tdrgtps 24080 | . . . 4 β’ (π β TopDRing β π β TopSp) | |
10 | 1, 7 | istps 22835 | . . . 4 β’ (π β TopSp β π½ β (TopOnβ(Baseβπ ))) |
11 | 9, 10 | sylib 217 | . . 3 β’ (π β TopDRing β π½ β (TopOnβ(Baseβπ ))) |
12 | 1, 3 | unitss 20314 | . . . 4 β’ π β (Baseβπ ) |
13 | resttopon 23064 | . . . 4 β’ ((π½ β (TopOnβ(Baseβπ )) β§ π β (Baseβπ )) β (π½ βΎt π) β (TopOnβπ)) | |
14 | 11, 12, 13 | sylancl 585 | . . 3 β’ (π β TopDRing β (π½ βΎt π) β (TopOnβπ)) |
15 | 11, 14 | cnmpt1st 23571 | . . 3 β’ (π β TopDRing β (π₯ β (Baseβπ ), π¦ β π β¦ π₯) β ((π½ Γt (π½ βΎt π)) Cn π½)) |
16 | 11, 14 | cnmpt2nd 23572 | . . . 4 β’ (π β TopDRing β (π₯ β (Baseβπ ), π¦ β π β¦ π¦) β ((π½ Γt (π½ βΎt π)) Cn (π½ βΎt π))) |
17 | 7, 4, 3 | invrcn 24084 | . . . 4 β’ (π β TopDRing β (invrβπ ) β ((π½ βΎt π) Cn π½)) |
18 | 11, 14, 16, 17 | cnmpt21f 23575 | . . 3 β’ (π β TopDRing β (π₯ β (Baseβπ ), π¦ β π β¦ ((invrβπ )βπ¦)) β ((π½ Γt (π½ βΎt π)) Cn π½)) |
19 | 7, 2, 8, 11, 14, 15, 18 | cnmpt2mulr 24086 | . 2 β’ (π β TopDRing β (π₯ β (Baseβπ ), π¦ β π β¦ (π₯(.rβπ )((invrβπ )βπ¦))) β ((π½ Γt (π½ βΎt π)) Cn π½)) |
20 | 6, 19 | eqeltrid 2833 | 1 β’ (π β TopDRing β / β ((π½ Γt (π½ βΎt π)) Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β wss 3947 βcfv 6548 (class class class)co 7420 β cmpo 7422 Basecbs 17179 .rcmulr 17233 βΎt crest 17401 TopOpenctopn 17402 Unitcui 20293 invrcinvr 20325 /rcdvr 20338 TopOnctopon 22811 TopSpctps 22833 Cn ccn 23127 Γt ctx 23463 TopDRingctdrg 24060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fi 9434 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-tset 17251 df-rest 17403 df-topn 17404 df-topgen 17424 df-plusf 18598 df-minusg 18893 df-mgp 20074 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cn 23130 df-tx 23465 df-tmd 23975 df-tgp 23976 df-trg 24063 df-tdrg 24064 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |