MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrcn Structured version   Visualization version   GIF version

Theorem dvrcn 23335
Description: The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
dvrcn.j 𝐽 = (TopOpen‘𝑅)
dvrcn.d / = (/r𝑅)
dvrcn.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
dvrcn (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn 𝐽))

Proof of Theorem dvrcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
3 dvrcn.u . . 3 𝑈 = (Unit‘𝑅)
4 eqid 2738 . . 3 (invr𝑅) = (invr𝑅)
5 dvrcn.d . . 3 / = (/r𝑅)
61, 2, 3, 4, 5dvrfval 19926 . 2 / = (𝑥 ∈ (Base‘𝑅), 𝑦𝑈 ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦)))
7 dvrcn.j . . 3 𝐽 = (TopOpen‘𝑅)
8 tdrgtrg 23324 . . 3 (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
9 tdrgtps 23328 . . . 4 (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp)
101, 7istps 22083 . . . 4 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅)))
119, 10sylib 217 . . 3 (𝑅 ∈ TopDRing → 𝐽 ∈ (TopOn‘(Base‘𝑅)))
121, 3unitss 19902 . . . 4 𝑈 ⊆ (Base‘𝑅)
13 resttopon 22312 . . . 4 ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝑈 ⊆ (Base‘𝑅)) → (𝐽t 𝑈) ∈ (TopOn‘𝑈))
1411, 12, 13sylancl 586 . . 3 (𝑅 ∈ TopDRing → (𝐽t 𝑈) ∈ (TopOn‘𝑈))
1511, 14cnmpt1st 22819 . . 3 (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦𝑈𝑥) ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn 𝐽))
1611, 14cnmpt2nd 22820 . . . 4 (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦𝑈𝑦) ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn (𝐽t 𝑈)))
177, 4, 3invrcn 23332 . . . 4 (𝑅 ∈ TopDRing → (invr𝑅) ∈ ((𝐽t 𝑈) Cn 𝐽))
1811, 14, 16, 17cnmpt21f 22823 . . 3 (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦𝑈 ↦ ((invr𝑅)‘𝑦)) ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn 𝐽))
197, 2, 8, 11, 14, 15, 18cnmpt2mulr 23334 . 2 (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦𝑈 ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))) ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn 𝐽))
206, 19eqeltrid 2843 1 (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  .rcmulr 16963  t crest 17131  TopOpenctopn 17132  Unitcui 19881  invrcinvr 19913  /rcdvr 19924  TopOnctopon 22059  TopSpctps 22081   Cn ccn 22375   ×t ctx 22711  TopDRingctdrg 23308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-rest 17133  df-topn 17134  df-topgen 17154  df-plusf 18325  df-minusg 18581  df-mgp 19721  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-tx 22713  df-tmd 23223  df-tgp 23224  df-trg 23311  df-tdrg 23312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator