|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dvrcn | Structured version Visualization version GIF version | ||
| Description: The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| dvrcn.j | ⊢ 𝐽 = (TopOpen‘𝑅) | 
| dvrcn.d | ⊢ / = (/r‘𝑅) | 
| dvrcn.u | ⊢ 𝑈 = (Unit‘𝑅) | 
| Ref | Expression | 
|---|---|
| dvrcn | ⊢ (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2737 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | dvrcn.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 4 | eqid 2737 | . . 3 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 5 | dvrcn.d | . . 3 ⊢ / = (/r‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | dvrfval 20402 | . 2 ⊢ / = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ 𝑈 ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) | 
| 7 | dvrcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 8 | tdrgtrg 24181 | . . 3 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | |
| 9 | tdrgtps 24185 | . . . 4 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) | |
| 10 | 1, 7 | istps 22940 | . . . 4 ⊢ (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅))) | 
| 11 | 9, 10 | sylib 218 | . . 3 ⊢ (𝑅 ∈ TopDRing → 𝐽 ∈ (TopOn‘(Base‘𝑅))) | 
| 12 | 1, 3 | unitss 20376 | . . . 4 ⊢ 𝑈 ⊆ (Base‘𝑅) | 
| 13 | resttopon 23169 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝑈 ⊆ (Base‘𝑅)) → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) | |
| 14 | 11, 12, 13 | sylancl 586 | . . 3 ⊢ (𝑅 ∈ TopDRing → (𝐽 ↾t 𝑈) ∈ (TopOn‘𝑈)) | 
| 15 | 11, 14 | cnmpt1st 23676 | . . 3 ⊢ (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ 𝑈 ↦ 𝑥) ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | 
| 16 | 11, 14 | cnmpt2nd 23677 | . . . 4 ⊢ (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ 𝑈 ↦ 𝑦) ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn (𝐽 ↾t 𝑈))) | 
| 17 | 7, 4, 3 | invrcn 24189 | . . . 4 ⊢ (𝑅 ∈ TopDRing → (invr‘𝑅) ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) | 
| 18 | 11, 14, 16, 17 | cnmpt21f 23680 | . . 3 ⊢ (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ 𝑈 ↦ ((invr‘𝑅)‘𝑦)) ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | 
| 19 | 7, 2, 8, 11, 14, 15, 18 | cnmpt2mulr 24191 | . 2 ⊢ (𝑅 ∈ TopDRing → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ 𝑈 ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | 
| 20 | 6, 19 | eqeltrid 2845 | 1 ⊢ (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17247 .rcmulr 17298 ↾t crest 17465 TopOpenctopn 17466 Unitcui 20355 invrcinvr 20387 /rcdvr 20400 TopOnctopon 22916 TopSpctps 22938 Cn ccn 23232 ×t ctx 23568 TopDRingctdrg 24165 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-tset 17316 df-rest 17467 df-topn 17468 df-topgen 17488 df-plusf 18652 df-minusg 18955 df-mgp 20138 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-tx 23570 df-tmd 24080 df-tgp 24081 df-trg 24168 df-tdrg 24169 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |